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Abstract 

 

Medical instrumentation used in diagnosis and treatment relies on the accurate 

detection and processing of various physiological events and signals. While signal detection 

technology has improved greatly in recent years, there remain inherent delays in signal 

detection/ processing.  These delays may have significant negative clinical consequences 

during various pathophysiological events. Reducing or eliminating such delays would 

increase the ability to provide successful early intervention in certain disorders thereby 

increasing the efficacy of treatment. 

 

In recent years, a physical phenomenon referred to as Negative Group Delay 

(NGD), demonstrated in simple electronic circuits, has been shown to temporally advance 

the detection of analog waveforms. Specifically, the output is temporally advanced relative 

to the input, as the time delay through the circuit is negative.  The circuit output precedes 

the complete detection of the input signal. This process is referred to as signal advance 

(SA) detection.   

 

An SA circuit model incorporating NGD was designed, developed and tested. It 

imparts a constant temporal signal advance over a pre-specified spectral range in which the 

output is almost identical to the input signal (i.e., it has minimal distortion).  

 

Certain human patho-electrophysiological events are good candidates for the 

application of temporally-advanced waveform detection. SA technology has potential in 

early arrhythmia and epileptic seizure detection and intervention. Demonstrating reliable 

and consistent temporally advanced detection of electrophysiological waveforms may 

enable intervention with a pathological event (much) earlier than previously possible. SA 

detection could also be used to improve the performance of neural computer interfaces, 

neurotherapy applications, radiation therapy and imaging.  

 

In this study, the performance of a single-stage SA circuit model on a variety of 

constructed input signals, and human ECGs is investigated. The data obtained is used to 

quantify and characterize the temporal advances and circuit gain, as well as distortions in 

the output waveforms relative to their inputs. 



 

viii 
 

This project combines elements of physics, engineering, signal processing, statistics 

and electrophysiology. Its success has important consequences for the development of 

novel interventional methodologies in cardiology and neurophysiology as well as significant 

potential in a broader range of both biomedical and non-biomedical areas of application. 

 



 

ix 
 

              TABLE OF CONTENTS 

   

Copyright  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    

 

Dedication  .  .  .  .  .  .   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

 

Acknowledgements  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

 

Abstract .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    

 

Table of Contents  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

List of Illustrations .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

List of Tables.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   .  . 

 

Chapter I: Introduction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

  Hypotheses  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Objective 1.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    

Objective 2.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    

Objective 3.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    

 

Chapter II: Background and Significance .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

Negative Group Delay .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Causality/Superluminality  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Circuit Cascading  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Review of Previous NGD Investigations.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Preliminary Results  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Significance .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Selection of ECG’s for this Study .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    

 

 

 

 

 

 iv 

   

    v 

   

  vi 

   

    vii 

   

  ix 

   

xii 

     

 xv 

   

   1 

   3 

     4 

     4 

     5 

   

   7 

     7 

   11 

   12 

   15 

   17 

   22 

   24 

   26 

 

 



 

x 
 

Chapter III: Signal Advance Circuit Model Design and Initial Testing  . .  .  .  .  .  .  .  .   

SA Circuit Model Development.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

Circuit Model Stability  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

Transient Response  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

Gyrator Circuitry  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

Initial Input Test Signals  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Initial Circuit Model Performance Testing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

Initial Circuit Model Test Results.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

 Chapter IV: Constructed Test Signal Methods and Results.  .  .  .  .  .  .  .  .  .  .  .  .  .   

Constructed Test Signals.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

 Gaussian Pulses .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Single Frequency Sinusoids (Sine Bursts) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Tri-Frequency Test Signals.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

Time Domain Analyses.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Temporal Advance .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Gain  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    

Temporal Advance and Gain Results .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Frequency Domain Analyses  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Frequency Transformation.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Tri-Frequency Test Signal Gain .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Frequency Domain Correlations.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Output Distortion.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

Chapter V: Application to ECG Signals.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

ECG Signals - Individual Heartbeats  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Temporal Advance/Gain Analyses and Results.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Distortion Analyses  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Overall Distortion.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Input/Output Waveform Dissimilarity.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .    Input/Output Variability.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Interbeat Variability.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

 

 

29 

   31 

   36   

   40 

   41 

   45 

   46 

        47  

 

        52 

        52 

        53 

        53 

        54 

        56 

        56 

        58 

        59 

        62      

        62 

        65 

        66 

        67 

    

        70 

        71 

        74 

        78 

        78 

        80 

        81 

        82 

    

   



 

xi 
 

Chapter VI: Conclusions and Discussion .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Overall Results.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Example Applications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Electrocardiology.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Artifact Detection and Correction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Epileptic Seizure Detection/Suppression. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Neurofeedback.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

Brain-Computer/Neural Interfaces.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Medical Imaging .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Radiation Therapy .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Applications Summary.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 Investigation Limitations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Future Research.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

Appendix A .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    

 

Appendix B .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

Appendix C .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

Bibliography  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

 

Curriculum Vitae .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

 

 

 

 

 

 

 

 

 

 

       85 

       85   

       90 

       90 

       92 

       94 

       96 

       98 

     101 

     102 

     104 

     106 

     107 

 

     110 

 

     122 

 

     129 

 

     147 

 

     175 

 
 
 
 
 
 
 
 
 
 
 



 

xii 
 

         LIST OF ILLUSTRATIONS 

 

Chapter II: 

Figure 2.1: Input/advanced output pulses. .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 2.2: Simplified circuit block diagram  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 2.3: Front velocity and group velocity.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 2.4: Cascading SA circuits  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 2.5: Pulse width vs. period.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

Figure 2.6: SA circuit with pre- and post-filtering/signal conditioning.  .  .  .  .  .  .  .  .  .   

Figure 2.7: Parallel SA circuit array.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 2.8: Percent advance relative to input pulse width .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

Figure 2.9: SA circuit board  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

Figure 2.10: Actual output vs. input  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 2.11: Delay vs. frequency.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

Figure 2.12: Gain vs. frequency (500 H SA circuit model, semi-log).  .  .  .  .  .  .  .  .  . 

Figure 2.13: Phase vs. frequency (500 Hz SA circuit model, semi-log.  .  .  .  .  .  .  .  . 

Figure 2.14: Phase vs. frequency (500 Hz SA circuit model, linear) .  .  .  .  .  .  .  .  .  .   

Figure 2.15: Group delay vs. frequency (500 Hz SA circuit model, semi-log) .  .  .  .  .   

Figure 2.16: Gain vs. frequency (100 Hz SA circuit model, semi-log) .  .  .  .  .  .  .  .  .   

Figure 2.17: Group delay vs. frequency (100 Hz SA circuit model, semi-log) .  .  .  .  .   

Figure 2.18: Normal sinus rhythm .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 2.19: Spectral distribution of a normal sinus rhythm .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

Chapter III: 

Figure 3.1: Generalized SA circuit model  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 3.2: Three stage SA circuit model  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 3.3: Gain vs. frequency (semi-log plot) for the SPICE inductor-based SA 

                   circuit model.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 3.4: Phase vs. frequency (semi-log plot) for the SPICE inductor-based SA 

       circuit model.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 3.5: Phase vs. frequency (linear plot) for the SPICE inductor-based SA  

        circuit model.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

 

 

 

        7 

        8 

      10 

      12 

      12 

      13 

      14 

      16 

      17 

      17 

      18 

      19 

      20 

      20 

      21 

      21 

      22 

      25 

      26 

  

 

      29 

      30 

  

      34 

  

      35 

       

      35 



 

xiii 
 

Figure 3.6: Group delay vs. frequency (semi-log plot) for the SPICE inductor- 

       based SA circuit model  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 3.7: Pole-zero plot  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 3.8: Gain vs. frequency (semi-log plot) from the mathematical model and 

       SPICE inductor-based SA circuit model.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

Figure 3.9: Phase vs. frequency (linear plot) for the mathematical model and 

       SPICE inductor-based SA circuit model.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 

Figure 3.10: Group delay vs. frequency (semi-log plot) for the mathematical 

         model and SPICE inductor-based SA circuit model  .  .  .  .  .  .  .  .  .  .  .  

Figure 3.11: Gain vs. frequency (semi-log plot) for the mathematical model and 

        SPICE inductor and gyrator based SA circuit model .  .  .  .  .  .  .  .  .  .  .   

Figure 3.12: Phase vs. frequency (linear plot) for the mathematical model and 

        SPICE inductor and gyrator based SA circuit model .  .  .  .  .  .  .  .  .  .  .   

Figure 3.13: Group delay vs. frequency (semi-log plot) for the mathematical 

          model and SPICE inductor and gyrator based SA circuit model .  .  .  .  .   

Figure 3.14: Sine burst (10 Hz) input/output plots for the inductor and gyrator 

         based SA Circuit Models .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 3.15: Gaussian windowed sinusoids .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 3.16: Advanced 2.5 Hz sine wave with output oscillation.  .  .  .  .  .  .  .  .  .  .  .   

Figure 3.17: Results from a Gaussian pulse with inadequate sampling rate.  .  .  .  .  .   

Figure 3.18: Example of the Gaussian pulse results.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 3.19: Peak distortion in the temporally advanced sine burst output  .  .  .  .  .  .   

Figure 3.20: Example of the sine burst results.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

 

Chapter IV: 

Figure 4.1: Fast Fourier transform .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 4.2: Superposition  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 4.3: Tri-frequency test signal .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 4.4: Enlarged region of the tri-frequency test signal  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 4.5: Cross-correlation v. lag.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 4.6: Gaussian pulse temporal advance vs. frequency  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 4.7: Sine burst temporal advance vs. frequency.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

Figure 4.8: Plot of temporal advance vs. frequency for the Gaussian pulse and 

       sine burst results compared to the theoretical results .  .  .  .  .  .  .  .  .  .  .  

 

      36  

      38 

  

      39 

  

      39 

  

      40 

  

      42 

   

      43 

   

      43 

 

      44 

      46 

      47 

      48 

      49 

      49 

      50 

 

 

      54 

      54 

      55 

      56 

      57 

      59 

      60 

 

      60 



 

xiv 
 

Figure 4.9: Gain vs. frequency for the Gaussian pulse, sine burst test signals  .  .  .  .   

Figure 4.10: Spectral distribution - Gaussian pulse (40 ms at half amplitude) .  .  .  .  

.   

Figure 4.11: Spectral distribution - 10 Hz sine burst .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 4.12: Spectral distribution - tri-frequency test signal  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 4.13: Gain vs. frequency for the Gaussian Pulse, sine burst and  

         tri-frequency test signals .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

Chapter V: 

Figure 5.1: Human heartbeat - input and temporally advanced output with artifact .  .      

Figure 5.2: Human heartbeat - input and temporally advanced output  .  .  .  .  .  .  .  .   

Figure 5.3: Temporally advanced detection of four consecutive heartbeats.  .  .  .  .  .   

Figure 5.4: Spectral distribution of an individual heartbeat ECG.  .  .  .  .  .  .  .  .  .  .  . 

Figure 5.5: Average gain vs. frequency for each subject.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 5.6: Gain vs. frequency for the ECG’s and constructed test signals .  .  .  .  .  .   

Figure 5.7: Plot of temporal advance vs. frequency for the ECG signals compared      

                   to the SPICE gyrator based SA circuit model analysis  .  .  .  .  .  .  .  .  .  .   

Figure 5.8: Human ECG QRS peak  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

 

Chapter VI 

Figure 6.1: Overall temporal advance results .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 6.2: Overall gain results  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 6.3: Input/output distortion ratios.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure 6.4: Input/output waveform dissimilarity .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

Appendix A: 

Figure A.1: Simplified SA circuit schematic .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Figure A.2: SPICE 25 Hz SA circuit model schematic (1 of 3)  .  .  .  .  .  .  .  .  .  .  .  .   

Figure A.3: SPICE 25Hz SA circuit model schematic - 105H gyrator circuit (2 of 3).  . 

Figure A.3: SPICE 25Hz SA circuit model schematic - 26.6H gyrator circuit (3 of 3)  . 

 

 

 

 

      61 

      64 

      64 

      65 

 

      66 

 

 

      72 

      73 

      74 

      76 

      77 

      77 

 

      78 

      81 

     

 

      87 

      87 

      88 

      89 

 

 

 

     110 

     111 

     112 

     113 

 

 

 



 

xv 
 

 



 

xv 
 

       LIST OF TABLES 

Chapter II: 

Table 2.1: Input pulse width/frequency and temporal advance  .  .  .  .  .  .  .  .  .  .  .  .   

 

Chapter III: 

Table 3.1: Initial SA circuit model test signal results .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

Chapter IV: 

Table 4.1: Constructed test signal temporal advance results  .  .  .  .  .  .  .  .  .  .  .  .  .   

Table 4.2: Constructed test signal gain results.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Table 4.3: Constructed test signals correlation results.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Table 4.4: Tri-frequency test signal distortion ratios (%) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Table 4.5: Input/output waveform dissimilarity (%) for the constructed test signals  .  .   

 

Chapter V 

Table 5.1: Averaged ECG temporal advance/gain results .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Table 5.2: TDR and DR over various frequency ranges (%) .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Table 5.3: ECG input/output dissimilarity for each subject .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Table 5.4: Statistical comparison the three variability parameters of ECG signals.  .  .  

Table 5.5: ECG interbeat vs input/output correlations .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

Appendix A: 

Table A.1: Gaussian pulse preliminary test results.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Table A.2: Sine burst preliminary test results.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

 

Appendix B: 

Table B.1: Triple frequency randomization table.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Table B.2:  Attenuation factor randomization table.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

Table B.3:  Gaussian pulse results summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Table B.4: Sine burst results summary.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Table B.5:  Tri-frequency results summary.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Table B.6:  Gain as a function of frequency for the tri-frequency signals  .  .  .  .  .  .  .   

Table B.7: Overall total distortion ratio (%) for the tri-Frequency signals  .  .  .  .  .  .  .   

 

 

 

      16 

 

 

      51 

   

 

      59 

      61 

      66 

      68 

      69 

   

   

      75 

      79 

      80 

      83 

      84 

 

 

    120 

    121 

  

 

    122 

    123 

    124 

    125 

    126 

    127 

    128 



 

xvi 
 

Appendix C: 

Table C.1: ECG individual subject temporal advance/gain results (subject RJ) .  .  .  .   

Table C.2: ECG individual subject temporal advance/gain results (subject EG).  .  .  .   

Table C.3: ECG individual subject temporal advance/gain results (subject VS) .  .  .  .  

Table C.4: ECG individual subject temporal advance/gain results (subject MH).  .  .  .  

Table C.5: ECG individual subject temporal advance/gain results (subject MJ) .  .  .  .   

Table C.6: Distortion ratios (%) (subject RJ) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Table C.7: Distortion ratios (%) (subject EG).  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Table C.8: Distortion ratios (%) (subject VS.)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

Table C.9: Distortion ratios (%) (subject MH)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  

Table C.10: Distortion ratios (%) (subject MJ) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Table C.11: Relative spectral contribution above and below 25 Hz 

                (subjects: RJ, EG, VS - normal heart rate) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Table C.12: Relative spectral contribution above and below 25 Hz 

                    (subjects: MH, MJ - tachycardia) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Table C.13: Input/output waveform dissimilarity (1-rMSP).  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   

Table C.14: Input/Output variability of three ECG signal parameters (subject RJ).  .  . 

Table C.15: Input/Output variability of three ECG signal parameters (subject EG)  .  . 

Table C.16: Input/Output variability of three ECG signal parameters (subject VS).  .  . 

Table C.17: Input/Output variability of three ECG signal parameters (subject MH)  .  . 

Table C.18: Input/Output variability of three ECG signal parameters (subject MJ)   .  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

    129 

    130 

    131 

    132 

    133 

    134  

    135 

    136 

    137 

    138 

  

    139 

 

    140 

    141 

    142 

    143 

    144 

    145 

    146 

 

 

 

 

 

 

 

 



 

1 
 

 

 

 

Chapter I 

Introduction 

 

There are numerous biomedical applications where an electrophysiological signal is 

transduced, analyzed and then returns information that is useful therapeutically or 

diagnostically for the purpose of interventional or therapeutic control. The process of 

acquiring and utilizing physiological data requires its detection as an analog signal typically 

followed by additional processing steps such as signal amplification, filtering, conversion to 

digital form, signal interpretation and response generation.  Each of these steps takes a 

certain amount of time to perform, thereby delaying the use of the acquired signal for 

possible treatment or as an intervention.  

 

In addition, a number of responsive biomedical applications rely on the ability to 

separate electrophysiological signal features or components based on specific spectral 

characteristics.  Often, features of interest overlap or are masked by other activity in the 

bioelectric waveform complicating needed feature extraction. As with any signal processing 

operation, spectral separation delays the use of the processed data, thus potentially 

reducing its effective use in a responsive biomedical system.  

 

The performance of signal acquisition technology used in electronic systems to 

acquire and process signals continues to improve. The inherent delays between the 

detection of electrophysiologically generated signals, their subsequent processing and use 

however, remain an obstacle with respect to further progress in treatment-intervention.   

 



 

2 
 

To address this problem and provide a possible method for improving responsive 

system performance, this dissertation describes the development of a circuit model, based 

on a phenomenon in physics referred to as Negative Group Delay (NGD) that can be used 

to offset signal processing delays by temporally advancing the detection of 

electrophysiological signals.  

 

In Chapter II (Background and Significance) the subject of NGD which signifies the 

temporal advance of a circuit transit time in electronics, is introduced.  Electronic circuitry 

has been developed to produce an NGD that has been shown to temporally advance (i.e. 

reduce or negate the time delay) the detection of a range of signals including Gaussian 

pulses, sine waves and audio signals that contain multiple frequency components. Further, 

this effect has been demonstrated in both narrow and broad frequency bands using 

electronic circuitry.  

 

 Given the counterintuitive nature of the concept of temporally advancing signal 

detection, the issue of causality/superluminality is also addressed in Chapter II. Further, the 

possibility of increasing the temporal advance through the cascading of multiple single-

stage signal advance (SA) circuits is discussed. Experimental results from a number of 

studies for signals ranging in frequency from 0.2 to over 3,000 Hertz (Hz) are summarized, 

compared and used to project anticipated results for the present study.  

 

 The circuit response results obtained from the investigator’s early physical circuits 

and preliminary theoretical circuit models are presented, including circuit models designed 

for different frequency ranges. A practical discussion of SA utility based on the performance 

and response times of current analog and digital electronics is also presented.  Finally, a 

rationale for development of an SA circuit designed to operate over the spectral range of 1 

to 25 Hz for the purpose of temporally advancing the detection of electrocardiograms (ECG) 

is provided.   

 

  In order to take advantage of current feature selection methodologies used in online 

signal processing systems, any temporally advanced output must have minimal signal 

distortion of the features of interest.  In the case of electrocardiology, a number of clinical 

indications are related to variations in the timing of events, as well as ECG amplitude 
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variations.  As such, the timing of signal components and signal distortion are important 

considerations.  

 

Hypotheses 

 

 Based on the background information, results of previous studies and the 

investigator’s preliminary results, the following working hypothesis is put forth: 

  

ECG waveform detection (specifically, individual heartbeats) can be temporally 

advanced at least 5 ms (  5%/0.25 ms) using a single-stage SA circuit model.  In addition, 

the output signal distortion with respect to the input signal will be ten percent or less.  

 

 Stated as a null hypothesis, ECG waveform detection temporal advance obtained 

using a single-stage SA circuit model is less than or equal to 4.75 ms and the output 

distortion is greater than 10%.   

 

 In order to test these hypotheses, the SA circuit model should meet the following 

performance goals:  

 

1) Temporal advance of ECG waveforms by 5 ms (  0.25 ms) with a coefficient of 

variation (Cv) of less than 5%,  

 

2) Mean gain of 1.0  10% with a Cv of less than 10%,  

 

3) Distortion ratio of less than 10%, 

 

4) A statistically insignificant increase in variance (based on the F-test comparing 

multiple input and output ECG waveform features),   

 

5) Input/output waveform dissimilarity of less than 1%  
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 In order to achieve these goals, it is necessary to quantify the effects of temporally 

advanced signal detection in terms of the actual advance achieved and any resulting signal 

distortions. This is accomplished by comparing the temporally advanced output waveforms 

to their respective inputs. The specific objectives of this study are: 

 

Objective 1  

 

To design and develop a single stage, SA circuit model optimized for the 

frequency range of 1 to 25 Hz using circuit analysis/simulation software. Preliminary testing 

of the SA circuit model is performed using the following input test signals: 1) Gaussian 

pulses with half amplitude pulse widths of > 0.2 s (1/2 period of 25 Hz sinusoids) and 2) 

single frequency sinusoidal waveforms between 1 and 25 Hz. The results obtained will be 

used to confirm performance of the SA circuit model design and evaluate adequacy of the 

constructed input test signals.  

  

Objective 2    

 

To test the SA circuit model using the following constructed test signals: 1) Twenty-

five Gaussian pulses with widths of 0.2 to 5.0 s (1/2 period of 1 to 25 Hz sinusoids), 2) 

Twenty-five single frequency sinusoids ranging from 1 to 25 Hz; 3) Twenty-five tri- 

frequency waveforms constructed of three superposed sinusoids of varying amplitudes and 

frequencies.  

 

The results are analyzed in the time-domain in order to quantify and characterize 

the duration and constancy of both the temporal advance and the gain of the SA circuit 

output with respect to its input as well as any resultant signal distortion. Cross-correlation 

analyses will be employed to objectively determine the temporal advance obtained based 

on the time associated with the maximum correlation.  

 

The input and output signals are then subjected to spectral analysis in order to 1) 

characterize signal distortion in the output waveforms, 2) calculate the gain relative to 
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frequency for the triple frequency test signals and 3) apply correlation analysis to compare 

the spectral content of the outputs with their respective inputs.  

 

Objective 3 

 

To test the effects of SA circuitry on pre-recorded human electrocardiography 

(ECG) waveforms (specifically individual sinus rhythms/heartbeats), including three ECG’s 

from subjects exhibiting normal sinus rhythms and two from subjects exhibiting tachycardia.  

The results are analyzed in both the time (temporal advance and gain) and frequency 

domains (signal distortion) using the analyses described in Objective 2. Cross-correlation 

analyses are employed to quantify the temporal advance achieved.  Input/output distortion 

ratios are calculated and Fourier and correlation analyses are used to quantify 

morphological shape distortion.  

 

Achieving these objectives enables the requisite results to quantify the signal 

detection temporal advance and characterize the effect of the SA circuitry on the ECG 

signals.  

 

In Chapter III (SA Circuit Model Design and Initial Testing) the methods employed in 

theoretical circuit model design using SPICE circuit development and analysis software are 

discussed and the theoretical circuit response characteristics in terms of gain, phase and 

group delay with respect to frequency are presented. In addition, composition of the 

preliminary test signals (Gaussian pulse and sine waves) and methods used to construct 

them, and the initial results of their application to the SA circuit model are reviewed. 

 

Chapter IV (SA Circuit Model Testing and Results Analyses) describes the methods 

for rigorous testing of the SA circuit model using constructed input test signals (Gaussian 

pulses, single frequency sine waves and triple frequency signals). The test signal 

construction and application to the SA circuit model is described. The transformation of the 

time domain signals into the frequency domain is explained. Finally, input and output 

signals are compared and analyzed in both the time and frequency domain and detailed 

experimental results are provided including: 

 



 

6 
 

 output variability relative to the input, 

 the constancy and amplitude of the gain relative to frequency,  

 the constancy and duration of the signal detection temporal advance,  

 overall distortion, and 

 waveform dissimilarity.  

 

In Chapter V (Application to ECG Signals) the preparation and application of ECG 

test signals (specifically individual heartbeats) to the SA circuit model is discussed. The 

time and frequency domain analyses and the experimental results are also provided. Also, 

assumptions regarding the spectral content of the ECG signals are tested and additional 

variability results are presented.       

 

In Chapter VI (Discussion) the results obtained are summarized and interpreted with 

respect to the original hypotheses and the SA circuit model performance goals.  A number 

of potential applications of SA technology are described that represent both near- and long-

term opportunities to potentially improve system performance. In addition, some of the 

study limitations and deficiencies are discussed as well as recommendations for 

remediation. And finally, a number of possible future studies are briefly described that 

address some of the study deficiencies and that may build on the results obtained in this 

investigation.          
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Chapter II 

Background and Significance 

 

Negative Group Delay 

 

 A phenomenon referred to as negative group delay (NGD) has recently been 

demonstrated in simple electronic circuits [1-5]. Typically, the group delay of a waveform 

propagating through a circuit or medium provides a measure of the transit time of the 

waveform envelope as it progresses 

through it. Thus, NGD, a counterintuitive 

concept, refers to a temporally advanced 

circuit transit time for a range of signals 

(i.e., the time delay is negated or 

reduced). Figure 2.1 shows results 

which demonstrate the relationship 

between the output of such a circuit 

relative to a Gaussian pulse input. Note 

that the detection of the output peak 

actually precedes the complete input 

signal peak detection. Figure 2.1: Input/advanced output 
pulses. 
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A simplified block diagram of a circuit that 

exhibits NGD is shown in Figure 2.2. The circuit consists 

of a high-gain operational amplifier (op amp) whose 

output is fed back to its inverting input (negative 

feedback) after passing through a passive linear 

feedback circuit. This passive linear feedback circuit 

consists of a combination of resistive, capacitive, or 

inductive components. 

 

  A signal applied to a passive linear circuit 

typically exhibits a temporal delay as the energy from the signal is stored in the electric field 

of the capacitors and the magnetic field of the inductors while it passes through these circuit 

components. High-gain operational amplifiers function to reduce the difference between the 

respective signals applied to their inverting (-) and non-inverting (+) inputs. In this circuit 

configuration, the output signal from the op amp passes through the feedback circuit 

incurring a time delay before being applied to the inverting input. This slightly delayed and 

inverted output recursively (repeatedly) applied to the inverting input results in the leading 

or foremost portions of the input waveform being differentially amplified, while the lagging 

portions are attenuated.  

 

The number of repeated cycles and the delay in the feedback loop are a function of 

the op amp response time and the overall impedance of the passive linear circuit. For a 

given op amp, the values of the components comprising the passive linear circuit in the 

feedback loop determine the overall signal transforming characteristics of the temporal 

advance circuitry.   

 

Alternate explanations for NGD have been offered by other investigators. For 

example,  

 

“…for operational amplifiers with a sufficiently high gain-feedback product, 

the voltage difference between the two input signals arriving at the inverting 

and non-inverting inputs of the amplifier must remain small at all times. The 

operational amplifier must therefore supply a signal with a negative group 

Figure 2.2: Simplified circuit  

                    block diagram. 
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delay at its output, such that the positive delay from the passive filter is 

exactly canceled out by this negative delay at the inverting (-) input port.” [3], 

 

and 

 

“…there is sufficient information in the early portion of any analytic voltage 

wave form to reproduce the entire waveform earlier in time.”  [6]. 

  

Empirically, the net result is that “this negative feedback circuit will produce an 

output pulse whose peak leaves the output port of the circuit before the peak of the input 

pulse arrives at the input port of this circuit.” [3]. 

 

 Op amp configurations that effectively reverse the circuit’s transfer function 

(mathematical representation of the relationship, as a function of frequency, between the 

input and output of a circuit) are not uncommon. For example, a negative impedance 

converter transforms a resistive load to its negative. Gyrator circuits use capacitive 

impedance to simulate large inductive impedances [7,8]. Thus, gyrators can be used to 

replace the large physical coils previously used to achieve large inductive impedance. 

      

 At first glance, the behavior of these circuits is counter-intuitive. It appears to violate 

causality since the temporally advanced output signal occurs before the input signal has 

been completely detected. This seemingly contradictory circuit behavior may be understood 

by recognizing that electromagnetic propagation is characterized by five different signal 

velocities as described by the physicist Léon Brillouin [9].  These are 

 

 Phase velocity - the speed at which the phase of any one spectral frequency 

component of the wave travels. 

 Group velocity - the speed at which the variations in the shape of the wave's 

amplitude (known as the modulation or envelope of the wave) propagates. 

 Front velocity - the speed of an abrupt signal discontinuity (signal abruptly turned on 

or off). 

 Velocity of energy transport - the speed of energy transfer. 

 Signal velocity- the speed of information transfer, which, under various conditions, 

may be equivalent to one or more of the above four velocities.  
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 According to Brillouin, the “front velocity will correspond to the speed at which the 

very first, extremely small (perhaps invisible) vibrations will occur, while the signal velocity 

yields the arrival of the main signal, with intensities on the order of the magnitude of the 

input signal.” [9]. 

 

Typically, the signal velocity is equivalent to both the group and energy transport 

velocities.  While the front velocity cannot exceed the speed of light, in special cases (e.g., 

media or circuitry which amplifies the initial or anterior-most portion of a waveform and 

attenuates the posterior portion), “… the group velocity … can be greater than the velocity 

of light c, can be infinite and even negative!” [9]. That is, the detection of a pulse or 

waveform at the output can precede its complete detection at the input. During the time 

interval between the arrival of the wave-front (front velocity) and the actual detection of the 

group waveform, electromagnetic energy begins to propagate through the circuit, the 

magnitude of which is not detectable until the oscillations achieve sufficient amplitude 

(Figure 2.3).  

 

 These very early, very low energy (typically undetected) perturbations (called 

forerunners by Brillouin) actually contain sufficient information to reproduce a temporally 

advanced signal. Thus, temporally advanced signal detection is accomplished by using a 

high-gain oscillator to amplify these earliest signal deflections. [1-3,10]. A signal temporal 

advance may not exceed the front velocity thereby establishing a theoretical signal 

detection or group velocity advance upper limit [1,3,9]. Electrophysiological signals are 

typically characterized by a waveform amplitude envelope that propagates at the group 

Figure 2.3: Front velocity and group velocity. 
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velocity. Thus, for most bioelectric waveforms, the signal velocity is equivalent to the group 

velocity.     

Causality/Superluminality 

  

 A number of articles refer to NGD as superluminal (faster than the speed of light) 

signal propagation [3,5,6], which raises the question, “Does NGD violate causality?”  The 

question of superluminality and causality were addressed in studies in which the input 

signal was suddenly discontinued. This resulted in a simultaneous (rather than advanced) 

discontinuity (signal or waveform abruption) in the output demonstrating a causal 

relationship between the input and output waveforms [1,3,5]. The causality issue was 

further examined in a study in which detection of the temporally advanced output peak was 

used as a trigger to abruptly discontinue the input signal before reaching its peak amplitude 

[2] which resulted in a damped oscillation in the temporally advance output waveform, again 

satisfying causality. 

        

 NGD circuitry essentially imparts a phase shift to the input signal thereby advancing 

its detection without violating causality. NGD has been demonstrated with both sinusoidal 

and “complex” (comprising multiple spectral components) audio signal inputs in which, over 

a band-limited spectral range, the phase has a positive linear slope with respect to 

frequency [5].  

 

 Group delay is defined as the negative of the rate of change of phase with respect 

to frequency, denoted mathematically as [11]:  

 

(ω) = -δ (ω)/δω,                                               (2.1)   

 

where ω is the frequency in radians and  is the signal phase. 

 

 As such, the negative of the derivative of a function with a positive linear slope 

yields an NGD that is constant over a specific frequency range. 
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 Utilizing Fourier analysis, any signal may be decomposed into a sum of sine waves 

of different frequencies. Further, the output of any linear, time-invariant system is equal to 

the sum of the responses of the system to each of its inputs [12]. Circuitry designed to 

impart a linear phase shift (with respect to frequency) will produce a constant temporal 

advance to all of the sine wave group velocities (over a limited spectral range). The result is 

equivalent to detecting the signal earlier than can currently be achieved with state-of-the art 

electronics technology. In the remainder of this work this temporally advanced signal 

detection effect is referred to as Signal Advance (SA). 

 

Circuit Cascading  

  

 The signal detection temporal 

advance that may be achieved in a single 

circuit stage appears to be limited to a 

fraction of the narrowest half-cycle pulse 

width of its input analog signal [1,4,5,13]. 

Serial cascading of SA circuit stages (Figure 

2.4) to increase the overall temporal advance 

has also been demonstrated. It has further 

been suggested that the resulting advance could exceed the narrowest input pulse width 

[3,4,13] but is likely limited to a few pulse rise times [10]. As the temporal advance 

increases through the cascading of multiple stages, signal distortion tends to increase due 

possibly to “ringing” – the generation of higher frequency components close to the circuit’s 

resonant frequency.  

 

 The phrase “a few pulse rise times” is 

interpreted as two to four pulse rise times, and 

a “pulse rise time” as one half of a pulse width 

(one fourth the period - Figure 2.5). This 

suggests that the overall advance that may be 

obtained, even with sequential cascading, 

may be limited to about one full period of the 

highest frequency component of the signal.      Figure 2.5: Pulse width vs. period. 

Figure 2.4: Cascading SA circuits. 
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 Cao, et al, [13] demonstrated that cascading could increase temporal advance of 

the signal within a narrow bandwidth with waveform distortion limited to pulse-width 

compression. However, this required highly filtered input waveforms [4,13].  It has been 

further demonstrated that multi-pole (i.e., having multiple resonances or characteristic 

frequencies) NGD circuitry may be designed that exhibits a relatively constant temporal 

advance and gain for band-limited signals [5].  

 

 A functional block diagram of a single SA circuit is shown in Figure 2.6. Depending 

on the specific application, an SA circuit may include the following sub-stages: 

 

  1.  A pre-filter/signal conditioning stage (analog only),  

 2.  A temporal advance circuit stage (analog), and  

 3.  A post-filter/signal conditioning stage (analog or digital).    

 

 It is important to note that the pre-filter/signal conditioning stage consists of analog 

circuitry (not digital), whereas the post-filter/signal conditioning stage may be implemented 

using either analog or digital electronics. Recall that the temporal advance circuitry 

functions to selectively amplify the very early, signal perturbations (referred to as 

forerunners [9]) effectively imparting a temporal advance to the analog signal detection. If 

the input signal is subjected to digital filtering/signal conditioning prior to its application to 

the temporal advance circuit, these early, low amplitude perturbations would be lost during 

the conversion from analog to digital.  

 

 Pre-filtering may be used to band-limit the incoming signals and, in the case of 

cascaded SA circuits, reduce or eliminate distorting noise from preceding stages.  Post-

Figure 2.6 SA circuit with pre- and post- filtering/signal conditioning. 
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filtering may be used to eliminate distortions resulting from the temporal advance circuit 

sub-stage.  

 

 It should also be noted that in order to achieve an overall signal detection temporal 

advance, any required pre- and/or post-filter stage must operate in less time than the 

temporal advance achieved by the SA circuit stage. Electronics technology that exhibits 

sufficiently short response times to achieve this will be discussed in more detail later.  

 

 Parallel arrays of narrowband SA circuits (where single SA circuits are additionally 

cascaded) can be configured to generate a more application specific input-output response 

(Figure 2.7). This parallel arrangement provides a mechanism to achieve a temporal signal 

advance over specific spectral frequency bands tuned to detect certain aspects of the 

incoming analog signal.   

  

 In general, the narrower the spectral band over which the SA circuit operates, the 

less complicated the SA circuit design.  In addition, the lower the maximum frequency the 

greater the detection advance that can be achieved per stage, thus fewer cascade stages 

might be required as the obtainable advance is a function of the highest frequency 

(narrowest half-cycle pulse width) in the input signal. 

Figure 2.7: Parallel SA circuit array. 
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 Parallel configurations using narrowband SA circuits could yield a more linear input-

output response in terms of gain and temporal advance over narrow spectral ranges of 

interest. Alternatively, they could be configured to impart varying delays/advances over 

certain spectral ranges, effectively acting as spectral filters resulting in temporal separation 

of waveform components based on their spectral content.    

  

 A number of practical applications have been described in the literature in which the 

use of NGD purportedly improves operational efficiency and system performance in several 

domains including: integrated circuit internal clocking [14,15], transistor-transistor 

communication [3], signal sampling and processing [16,17], microwave applications [18,19] 

and signal cable transmission [20].  Thus far, no references in the literature have been 

found reporting bioelectric applications of NGD.  Moreover, the cited applications do not 

operate over spectral ranges that generally include electrophysiological signals nor do they 

exhibit response characteristics suitable for such applications. Thus, application of NGD or 

temporal advance to physiological signals provides a fresh and open field of investigation 

that may have application in interventional, control or other responsive systems. 

 

Review of Previous NGD Investigations 

 

The results of a number of studies investigating NGD over a range of input signals 

reveal a consistent relationship between their primary wavelength/pulse widths and the 

temporal advance that was achieved. For studies in which the input signal was sinusoidal, 

the period of the signal’s highest frequency component (representing the minimum pulse 

width of the signal) was defined as the pulse width at one half amplitude of a raised cosine 

with a period equal to the inverse of the frequency of the sinusoid (Figure 2.5).  

 

Table 2.1 summarizes these results for inputs with half amplitude pulse widths 

ranging from about 2 s to 150 s, which corresponds to a spectral range of 0.2 Hz to 3.3 

kHz. The summary shows the duration of the temporal advance obtained as a percentage 

of the input pulse width.  

 

These results are depicted graphically in Figure 2.8. The advance achieved in a 

single stage relative to the input pulse width ranges from 30 to 40 percent; averaging about 
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Figure 2.8: Percent advance relative to input pulse width. 

35%.  For example, for a bioelectric waveform in which the range of spectral content of 

interest is less than 100 Hz and the period is 10 ms, thus the half amplitude pulse width is 5 

ms. As such, the signal detection temporal advance expected from a single SA circuit stage 

is about 1.5 ms.  Similarly, for an SA circuit model designed for signals with spectral content 

less than 25 Hz, the expected detection temporal advance would be around 5 ms. 

 

Table 2.1: Input pulse width/frequency and temporal advance. 

Study Pulse Width 
Equivalent 
Frequency 

Advance 
Percent 
Advance 

Hymel (2007)* 2.44 s 0.20 Hz 0.9 s 36.9% 

Kitano, et al., [4] 1.95 s 0.26 Hz 0.5 s 25.6% 

Chaio, et al., [3] 37.5 x 10-3 s 13 Hz 12.1 x 10-3 s 32.3% 

Hymel (2008)** 20.0 x 10-3 s 25 Hz 5.3 x 10-3 s 26.5% 

Hymel (2008)* 5.0 x 10-3 s 100 Hz 1.53 x 10-3 s 30.6% 

Zhilu, et al., [16] 1.57 x 10-3 s 320 Hz 0.66 x 10-3 s 42.0% 

Hymel (2008)* 0.67 x 10-3 s 750 Hz 0.31 x 10-3 s 46.5% 

Munday, et al [5] 0.17 x 10-3 s 3000 Hz 0.078 x 10-3 s 46.8% 

Erickson, et al. [19] 0.15 x 10-3 s 3300 Hz 0.047 x 10-3 s 31.7% 

 

   * See Preliminary Results (this chapter)     ** See Chapter 4 - Temporal Advance Results 
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Preliminary Results 

 

 Initial development efforts involved replicating and then later improving the response 

of NGD circuits described in the literature [3,4,5] using the Super-SPICE Gold Professional 

Circuit Analysis software package. These designs were tested using Gaussian pulse inputs 

and later, Gaussian-windowed sine waves. Gaussian-windowing (or filtering) was selected 

since the majority of the NGD studies employed Gaussian waveforms due to their rapid 

spectral roll-off and mathematical simplicity. Use of Gaussian-windowing also facilitates any 

future time-frequency analyses since the derivative of a Fourier transform of a Gaussian 

window is also a Gaussian function.   

 

 Based on the simulated design results, a 

two-stage SA circuit board (Figure 2.9) was 

constructed. To facilitate visual inspection, the 

circuit was tested using a Gaussian pulse with a 

half amplitude pulse width of two seconds as the 

input signal. Figure 2.10 is a time-lapsed image of 

a dual-trace oscilloscope (timescale: 0.5 s/div) 

showing the temporally advanced 

output pulse relative to the input. The 

signal detection advance achieved in 

each stage was roughly 0.45 s 

resulting in a 0.9 s overall advance. 

Note the output distortion (narrowed 

pulse width and skewing) relative to 

the input.   

 

 While the temporal advance obtained was over 0.5 s, it varied as a function of 

frequency (Figure 2.11) becoming positive (indicative of a time delay) as the frequency 

approached 0.45 Hz. Although these efforts convincingly demonstrate that a signal 

temporal advance design using NGD can be implemented in electronics, the response 

characteristics of this particular design would be of little utility in electrophysiology.   

Figure 2.9: SA circuit board. 

Figure 2.10: Actual SA output vs. input. 
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In order to achieve a constant temporal 

advance (or negative group delay) over a specific 

spectral range, the phase response must have a 

positive linear slope relative to frequency over the 

desired frequency range [5]. Subsequent SA 

circuit design efforts focused on establishing a 

relatively constant gain and temporal advance 

response over a spectral range relevant for 

electro-physiological signals (less than 1 kHz) that 

required a multi-pole design in order to linearize 

the circuit responses.  Figure A.1 (Appendix A) is a general schematic diagram for a three 

stage (including a resistor voltage divider), quadruple zero and quadruple pole SA circuit 

(without any pre- or post-filtering). The transfer function out / in) for this circuit may 

be expressed as 
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where the R’s are resistors, L’s are inductors, C’s are capacitors, i is the imaginary number 

(square root of -1), and ω is frequency in radians per second.  

 

SPICE circuit analysis software was used to numerically simulate the idealized 

theoretical performance of this circuit model using the program’s AC analysis function.  This 

analysis yielded data used to calculate responses in terms of the circuit model’s gain, 

phase and group delay with respect to frequency.  In the next chapter, the SPICE 

theoretical circuit performance/analysis is compared with an engineering-mathematical 

analysis of the circuit’s transfer function. 

 

 In order to develop an SA circuit model that demonstrates a relatively constant 

signal detection advance and gain response over a specific frequency range, the circuit 

components used by Munday and Henderson [5], which exhibited a relatively constant 

response range from 1 to over 2,500 Hz, were scaled. This was followed by adjusting their 

values to match the available physical components.  

 Figure 2.11: Delay vs. frequency. 
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 This process provides a method for the development of SA circuit models that 

exhibit a relatively constant gain and signal detection temporal advance response over a 

particular frequency range of interest. Two interim SA circuit model designs for the 

frequency ranges of 1 to 500 Hz and 1 to 100 Hz were developed based on this 

methodology. The theoretical circuit response results obtained for each of the SA circuit 

model designs are described over the next few pages.    

 

 Figure 2.12 is a semi-log graph of gain vs. frequency for an SA circuit model 

designed to achieve a linear positive slope through the threshold frequency of interest (in 

this case 500 Hz). Note the constancy of the gain for spectral content through 500 Hz and 

the location of the poles (at just over 1,000 and 2,000 Hz), and, later, in Figure 2.16 (at just 

over 200 and 400 Hz). 

  

 Figure 2.13 is a semi-log graph of phase vs. frequency of the 500 Hz SA circuit 

model. Note the phase discontinuities which correspond to the poles in Figure 2.12.  Figure 

2.14 is a linear-linear graph of phase vs. frequency for the same circuit model that displays 

the phase response over the frequency range from 1 to 1,200 Hz. Note the phase response 

has a positive linear slope to almost 1,000 Hz.  

 

Figure 2.12: Gain vs. frequency (500 Hz SA circuit model, semi-log). 
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 Figure 2.15 is a semi-log graph of group delay vs. frequency for the same SA circuit. 

Recall that negative group delay is equivalent to a signal detection temporal advance.  Note 

the constancy of the temporal advance (~300 µs) for spectral frequencies through 500 Hz. 

The discontinuities correspond to the poles in the gain plot (Figure 2.12).   

 

Figure 2.13: Phase vs. frequency (500 Hz SA circuit model, semi-log). 

Figure 2.14: Phase vs frequency (500 Hz SA circuit model, linear). 
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 Following successful development of the 500 Hz SA circuit model, an SA circuit 

design was developed to accommodate signals with spectral content in the range of 1 to 

100 Hz. Figures 2.16 and 2.17 depict the gain and group delay (respectively) vs. frequency. 

 

The signal gain and detection temporal advance are effectively constant through 

100 Hz and the temporal advance (or NGD) has increased to 1.5 ms. 

  

Figure 2.15: Group delay vs. frequency (500 Hz SA circuit model, semi-log). 

 

Figure 2.16: Gain vs. frequency (100 Hz SA circuit model, semi-log). 
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Significance 

 

In order to derive utility and value in the use of temporally advanced signal 

detection, there are functional requirements for the majority of electrophysiological 

applications. The length of the temporal advance achieved must 1) exceed the delay 

imposed for any required pre- or post-filtering, and 2) provide a sufficient temporal advance 

to reduce the electrophysiological signal processing time. In addition, for a number of near-

term applications, the temporally advanced output must also be a high fidelity 

representation of the input.  

 

Figure 2.10 shows the display from an oscilloscope of the input pulse and the 

temporally advanced output. It was noted that the output pulse was both narrowed and 

skewed (to the left). In the frequency domain, the pulse width narrowing would be manifest 

as a shift to a slightly higher frequency and the skewing would be indicated by the 

introduction of additional frequency components due to changes in shape/slope of output 

pulse. A refined SA circuit design was developed to provide a constant gain and signal 

detection advance in order to reduce these distortions.  

Figure 2.17: Group delay vs. frequency (100 Hz SA circuit model, semi-log). 
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Inspection of Figures 2.12 through 2.17 reveals that any spectral content in the input 

waveform above the design frequencies (500 Hz and 100 Hz, respectively) would 

experience disproportionate amplification. Further, in those spectral ranges, there may no 

longer be a temporal advance, but rather a variable temporal delay in which higher 

frequency spectral components would appear later in the output signal (Figure 2.15 and 

2.17). 

  

These temporal distortions could have a deleterious effect on the fidelity of the 

advanced output in broadband applications. This signal distortion could potentially render 

the advanced output unusable for some near-term clinical applications which rely on 

existing feature detection methods.  For these applications, required signal filtering must be 

completed in significantly less time than the detection temporal advance achieved. 

 

Signal conditioning to compensate for distortion in the temporally advanced output 

could be accomplished with either active operational amplifier (op-amp) based filters or 

digital signal processors with response/conversion rates that are negligible relative to the 

signal temporal advance obtained.  Ideally, signal conditioning would eliminate all spectral 

content above the design cut-off with appropriate roll-off characteristics while considering 

tradeoffs involving circuit complexity, time delay, and efficacy.  Post-filtering would minimize 

any disproportionately amplified frequencies above the design frequency that may be 

present in the advanced output generated by the temporal advancing circuitry itself.  Signal 

conditioning filtering could result in signal delays that might inadvertently negate the 

subsequent temporal advance of the SA circuit. Signal conditioning was not explored in this 

study.   

 

 Use of high-speed op-amps could fulfill both the control response and filtering 

requirements.  The key to successful implementation is the response (or settling) time of 

high-speed operational amplifiers which range from 5 µs to under 10 ns [21-26].  The time 

delay resulting from the use of these high-speed op amps will reduce the SA circuit 

temporal advance by a very miniscule amount (on the order of from 500 to 50,000 times 

less than a 5 ms advance achieved by the SA circuitry).  

 

 If more sophisticated algorithmic filtering or feature detection methodologies are 

required, digital filtering and detection methods using analog-to-digital convertors (ADCs) 
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and digital signal processors (DSPs) or digital controllers may be implemented. Recently 

announced/released ADCs and DSPs, which can be used to perform digital filtering and/or 

waveform reconstitution have settling times ranging from more than 400 times less (using 

the ADSI271 [27] or the ADS1605 [28] ADC coupled to the TMS5509 DSP [29]) to more 

than 6,000 times less (Freescale MC56F8023 Digital Signal Controller [30]) than the 

projected 5 ms waveform temporal advance. These devices are able to digitize incoming 

analog waveforms and execute up to forty program instructions per cycle (equivalent to the 

settling time).   

 

 Using the high-speed devices described above, any filtering/signal conditioning 

needed for most applications could be accomplished using relatively standard analog or 

digital filtering methods. However, the nonlinear nature of the SA circuit operation may 

require the development of more sophisticated algorithmic methodologies in order to 

reconstitute original signal characteristics and detect specific waveform features.  It is 

important to note that while digital filtering/signal conditioning methods can be applied to the 

temporally advanced output signal, they cannot be applied to the incoming signal prior to its 

application to the temporal advance circuitry. This is because the analog-to-digital 

conversion process would eliminate the very early, very low energy (typically undetected) 

forerunners, which are preferentially amplified by signal advance technology.  

 

 

Selection of ECG’s for this Study 

  

 The goal of this research is to evaluate the input/output characteristics a single 

stage temporal advance circuit designed to impart a constant gain and temporal advance 

over a specific spectral range in order to facilitate its use as a research tool. Therefore, for 

the purposes of this study, an SA circuit model was designed to temporally advance 

detection of human electrocardiogram (ECG) signals.  

 

A number of signal characteristics (Figure 2.18) make the ECG an ideal candidate 

for the investigation of SA technology: 

 



 

25 
 

• The ECG is generally a well-defined waveform containing “signature” voltage 

deflections designated P, Q, R, S, T, U. 

• The QRS complex has a high signal-to-noise ratio (SNR)  

• ECG signal amplitudes are measured in millivolts (vs. micro-volts for EEG signals). 

• A number of cardiac pathologies are reflected not only by changes in ECG signal 

amplitudes but in deviations from normal of various time intervals. 

 

 Consider a hypothetical ECG application in which the goal is simply the temporally 

advanced detection of the peak of the R-wave. The duration of the QRS complex of a 

normal human ECG sinus rhythm ranges from 0.04 to 0.10 s.  A minimum 40 ms period for 

the QRS complex translates to maximum frequency of 25 Hz.  Further, normal cardiac 

rhythms are broadband signals containing harmonics up to approximately 25 Hz [53].  

Fourier analysis was applied to ECG recordings of human heart beats. The spectral 

distributions obtained from these recordings (Figure 2.19) indicate that the majority of the 

power contribution (> 90%) derives from spectra below 25 Hz, supporting the assertions 

regarding the frequency content of cardiac rhythms.  

 

 Thus, the SA circuit model used in this study to investigate the constancy of both 

gain and temporal advance of cardiac signals is designed for a frequency range for 1 to 25 

Hz.  Based on results summarized in Table 2.1 (and shown graphically in Figure 2.8) the 

projected temporal advance for a single-stage SA circuit model designed for ECG signals 

with a design cut-off of 25 Hz is expected to be approximately 5 ms. 

Figure 2.18: Normal sinus rhythm. 
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Summary  

 

 The following have been demonstrated with respect to SA circuit technology: 

 

 Output signal detection can be temporally advanced relative to the complete 

detection of the input signal.  

 

 The advance and gain may be constant over a specified spectral range. 

 

 Wideband analog waveforms (those with multiple spectral components) can be 

temporally advanced. 

 

 SA circuits are scalable to specific spectral ranges. 

 

Figure 2.19: Spectral distribution of a normal sinus rhythm. 
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 Based on previous studies, the signal detection temporal advance that may be 

achieved is directly related to input signal pulse width and inversely related to the 

maximum frequency of the signal. 

 

 Temporally advanced signal detection is not superluminal and does not violate 

causality.   

 

 Temporal signal advance may be increased by cascading multiple circuit stages. 

 

 The response time of current analog and digital electronics is significantly less than 

the projected signal detection temporal advance that is likely to be attainable.   

 

 ECG waveform characteristics are well suited for a study of the effect of SA 

technology on electrophysiological signals. 

 

 There appears to be ample evidence that an SA circuit model can be designed that 

yields both nearly constant amplitude gain and signal detection temporal advance for 

spectral bands that include electrophysiological signals such as the ECG, EMG and EEG. 

Furthermore, based on direct experimentation and results obtained by other investigators, 

the temporal advance can be increased by cascading multiple SA circuit stages, provided 

that signal distortion and any introduced artifacts (particularly high frequency oscillations) 

can be kept to a minimum.     

 

SA technology has potential applications in a broad range of signal detection and 

processing systems, both physiological and non-physiological.  SA technology may be well 

suited for medical instruments and treatment devices as well as electrophysiological 

interfaces used in the detection, acquisition and processing of band-limited analog 

waveforms produced by the body (e.g., brainwaves - EEG/MEG; neuromuscular potentials - 

EMG; cardiac rhythms - ECG). The ability to provide faster, more immediate detection of 

and a more rapid response to anomalous signals or alarm conditions may enable more 

effective control or intervention.  
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Some potential applications include real-time artifact detection/correction, neural 

pacing/seizure suppression, neurofeedback/neurotherapy, brain-computer/neural interfaces 

and electrocardiology. Further, SA technology could enhance the performance of 

physiologically gated diagnostic and therapeutic applications such as imaging and 

radiotherapy by temporally advancing the detection of certain trigger signals thereby 

improving target and timing accuracy.  For each of these applications, reducing response 

time and/or temporally separating overlapping signals could yield significant improvements 

in overall system performance.  This may allow for more effective treatment of certain 

conditions, potentially opening the door to a whole new class of medical devices that 

respond faster than any that is currently available.  
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Chapter III 

Signal Advance Circuit Model 

 Design and Initial Testing 

 

 

A general systems approach was used for the circuit/signal analysis described in the 

following.  Figure 3.1 is a top-level simplified schematic of the black box showing its input 

and output signals.  

 

The functioning of the circuit model is fully characterized by its so-called impulse 

response function, h(t). The signal output of the circuit y(t), is the convolution of the input 

signal x(t) with h(t) or   

y(t) = x(t) *  h(t),                                                    (3.1) 

Figure 3.1: Generalized SA circuit model. 
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Figure 3.2: Three stage SA circuit model. 

where “*” represents the convolution operator [31].  In signal processing, time domain 

signals are usually transformed into their frequency domain representations - most notably 

using Fourier transformation. When transforming the above equation in this way, 

convolution in the time domain becomes multiplication in the frequency domain: 

 

Y(ω) =  X(ω) H(ω).                                                 (3.2) 

 

where H(ω) is the so-called transfer function of the circuit and ω is the angular frequency in 

radians (ω = 2πf, where f is the regular frequency in Hertz). By convention, capital letters 

are used for the frequency domain representations of signals. The Fourier domain signals X 

and Y, and transfer function H are complex (consisting of real and imaginary portions) and 

can be represented as phasors or vectors, i.e., they are characterized by their magnitude 

(symbolized by the absolute value sign | |) and phase angle (symbolized by φ) as a function 

of frequency, ω [32]. 

 

The SA circuit model is designed with two architecturally identical stages in series 

(cascaded), each consisting of different valued components (refer to the general schematic, 

Figure A.1 and detailed schematics Figures A.2 through A.4 from the SPICE software in 

Appendix A).  A third stage is a voltage divider resistor network also in series that adjusts 

(reduces) the overall gain of the circuit by an amount 0 < G ≤ 1. Going inside the 

generalized circuit model shown in Figure 3.1, one arrives at the three stage systems 

diagram (Figure 3.2).   
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Here the overall transfer function is H(ω) = H1(ω) H2(ω) H3(ω), and the associated 

impulse response is h(t) = h1(t) * h2(t) * h3(t), i.e., the individual impulse responses for each 

stage are convolved to arrive at the impulse response for the overall circuit.  

 

SA Circuit Model Development   

 

SA circuit models were developed using Anasoft’s Super-SPICE Gold Professional 

Circuit Analysis Package [33].  SPICE has been the industry standard software for circuit 

design for over 25 years [34]. This software tool allows for full analog electronic circuit 

design, development and functional modeling as well as circuit operation and performance 

analyses based of the same foundational analyses described above. The circuit response 

output from SPICE was used to generate the idealized theoretical response functions for 

the gain, phase and group delay relative to frequency [35,36].      

 

The preliminary results section described a previous physical circuit which was 

assembled and tested as well as two (100 Hz and 500 Hz) SA circuit models that displayed 

constant temporal advance and gain characteristics over defined spectral ranges. It is 

important to recognize the difference between the development of a theoretical model and 

the SPICE circuit simulation. The theoretical analysis is dependent on mathematical 

models and assumes idealized component performance, whereas the circuit simulation 

requires the application of the actual signal to the circuit model and takes into account 

actual component performance data. Thus any theoretical results must be subsequently 

validated through circuit simulation and ultimately, in actual circuitry.     

 

The theoretical 25 Hz SA circuit model (Appendix A, Figure A.1), like the 100 Hz 

and 500 Hz circuit models described in Preliminary Results (Chapter II), is based on a four 

pole (two pairs of complex conjugate poles) design in order to obtain relatively constant 

temporal advance and gain characteristics over the frequency band of interest.  The initial 

25 Hz SA circuit model used no active components in the feedback loop, but rather only 

resistors, capacitors and inductors. The circuit component values were determined by 

linearly scaling component values used in the previous SA circuit model designs and 

subsequently adjusting the values to correspond to the available physical components. The 
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SA circuit model design yielded the desired circuit transfer response characteristics, 

essentially a constant gain and positive linear phase response over the frequency range of 

1 to 25 Hz, based on the SPICE theoretical AC analysis results.  

 

One result of this process is that the frequency corresponding to the first (lowest 

resonant frequency) pole is close to 60 Hz. This frequency corresponds to the AC mains’ 

line noise in most North American electrical systems, and is typically filtered to eliminate 

this source of artifact.  For a majority of biomedical signal applications (ECG, EEG, EMG, 

ENG, etc) the signals are routinely anti-alias/low-pass filtered. In addition, these signals are 

notch filtered at the mains frequency (60 Hz in North America). In order to adjust the 

resonant frequency corresponding to the first pole of the SA circuit model, component 

values used in the first half of the transfer function (eq. 2.2) would need to be modified to 

shift the first pole to a different frequency, say down to 50-55 Hz or up to 65-70 Hz. 

Compensatory adjustments of the values of the circuit components affecting the second 

pole (higher resonant frequency) would then need to be made to retain the desired gain 

and phase (and therefore negative group delay) responses. 

 

The SA circuit model performance is tested in SPICE using AC analysis to 

determine its theoretical gain and phase response characteristics with respect to frequency.  

The SPICE AC analysis uses linearized models for all non-linear circuit components and 

applies an AC signal with a user specified frequency range providing theoretical circuit 

performance results (gain and phase) relative to frequency. A few problems were 

encountered associated with over-reliance upon ideal components exemplified by initial 

circuit performance failures. Resolution required a period of “debugging” and multiple 

consultations with Anasoft’s SPICE program developer. For example, the idealized 

capacitors lacked internal resistance (that give rise to voltage leakage in the real world) 

which was resolved by placing a 10 MΩ (meg-Ohm) resistor in parallel with each capacitor 

in order to simulate the voltage leakage.   

 

From the AC analysis yielding the circuit model’s frequency response, SPICE 

generates three columns of data accordingly. These are frequency (in radians) and the real 

and imaginary components of the Fourier transform of the circuit’s output voltage for each 

frequency.  From this data, the spectral magnitude of the output was calculated as the 
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square root of the sum of the squares of the real and imaginary parts of the discrete Fourier 

transform of the circuit output: 

 

|Y(ω)| =  [Re(Y(ω))2 + Im(Y(ω))2]1/2.                                (3.3) 

 

The gain was then found by dividing this measure by the magnitude of the circuit input at 

each discrete frequency. The phase is calculated by taking the arctangent of the real and 

imaginary output values and converting from radians into degrees:  

 

φ(ω) = arctan[Im(Y(ω))/Re(Y(ω))].                                 (3.4) 

 

Recall that group delay is defined as the negative of the rate of change of phase 

relative to frequency, mathematically -δφ(ω)/δω.  From the phase results (using frequency 

in radians), the circuit’s average group delay relative to frequency is numerically 

approximated to first-order as: 

 

                              τ(ω) =  -(φ(ω + ε) - φ(ω))/ε,                                (3.5) 

 

where ε is the frequency resolution following digitization.  The gain is computed as: 

 

G(f) = |H(f)| =  |Y(f)|/|X(f)|,                                           (3.6) 

 

where frequency (f) is in Hz.                                         

 

From these formulae the gain, phase and group delay responses relative to 

frequency for the 25 Hz SA circuit model were determined and plotted.  These responses 

serve as a basis for comparison with the results from the subsequent circuit model 

simulation studies.  

 

These circuit responses, derived both directly, using the SA circuit model transfer 

function, and through the SPICE AC analysis, exhibit a relatively constant gain through 25 

Hz (Figure 3.3).  The poles (corresponding to the circuit resonant frequencies) are located 

at 62.0 and 111.7 Hz.  The gain associated with the first pole is almost 27. 
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The AC analysis applies sinusoids at each frequency of one volt (peak-to-peak), 

thus the output voltage amplitude corresponding to the peak of the first pole (62 Hz) is 

nearly 27 V (volts). Given supply voltages of  10 V (see schematics, Appendix A), output 

amplitudes above 10 V are not realizable thus confirming that these responses reflect 

idealized theoretical results.  

 

Figure 3.4 is a semi-log graph of the theoretical phase vs. frequency for the SA 

circuit model designed to achieve a linear positive slope through the design frequency of 25 

Hz. Note the discontinuities in the phase response that occur at the same resonant 

frequencies that correspond to the pole locations in the gain response plot (Figure 3.3).   

 

Figure 3.5 is a linear-linear graph of the theoretical phase vs. frequency in which the 

upper frequency range is reduced to 75 Hz. In this graph, the desired linear phase 

response with a positive slope beyond 25 Hz is evident. 

 

 

Figure 3.3: Gain vs. frequency (semi-log plot) for the  

                     SPICE inductor-based SA circuit model. 



 

35 
 

 

Figure 3.6 is a graph of the theoretical group delay vs. frequency (computed from 

the phase vs. frequency data in Figure 3.5) that exhibits a relatively constant (just under) 5 

ms (average 4.92 ms) temporal advance for a band-limited input signal in the frequency 

range of 1 to 25 Hz.  Note the large temporal delays that occur at the poles (resonant 

frequencies). 

Figure 3.5: Phase vs. frequency (linear plot) for the  
                      SPICE inductor-based SA circuit model. 

 

Figure 3.4: Phase vs. frequency (semi-log plot) for the  
               SPICE inductor-based SA circuit model. 
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Circuit Model Stability 

 

The generalized transfer function for the SA circuit models (eq. 2.2) can be 

expressed as H(s) = [1 + N1(s)/D1(s)] x [1 + N2(s)/D2(s)] x G where s is the complex 

frequency variable, sometimes referred to as the Laplace variable, that replaces the term 

i .  The N(s)’s are the respective complex numerators for Stages 1 and 2, the D(s)’s are 

the respective complex denominators for Stages 1 and 2, and G is a scalar gain multiplier 

implemented as a voltage divider (Stage 3).  Substituting components into eq. 2.2, the 

transfer function becomes: 

 

H(s) = 

1

1

112

11
1

sCsLRR
x

2

1

234

11
1

sCsLRR
x

3029

29

RR

R . (3.8) 

 

Note that the term in square brackets just to the right of the equals sign is the 

transfer function H1(s) for Stage 1 of the circuit model and the second bracketed term is the 

Figure 3.6: Group delay vs. frequency (semi-log plot) for the 
                          SPICE inductor-based SA circuit model. 
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transfer function H2(s) for Stage 2 (refer back to Figure 3.2) and that H(s) = H1(s) H2(s) 

H3(s), with H3(s) = G. Eq. 3.8 may be simplified into the following form, from which circuit 

stability can be determined by solving for the zeros and the poles of H(s): 

 

H(s) =
1

1
1

1111
2

11

2 RsCCLs

sLR

R
x

1

1
1

3222
2

23

4 RsCCLs

sLR

R
x

3029

29

RR

R .(3.9) 

 

To solve this, the zeros and poles for Stages 1 and 2 are first found separately. 

Then, eq. 3.9 can be solved numerically (in subsequent discussion this is denoted as the 

“math” method) and determine the pole frequencies for (the composite) H(s).  Finally, these 

results are compared to the numerical equivalents derived from the SPICE theoretical 

circuit analysis. The circuit gain (Stage 3, the resistor voltage divider) G = 0.74. 

 

For each of Stages 1 and 2 there is a pair of complex conjugate zeros for a total of 

four.  The zeros for the first two circuit stages are found by setting each of the first two 

bracketed terms in eq. 3.9 equal to zero and solving for the roots of the resulting quadratic 

equations yields the zeros: 

211

2
211

2
12111211

2,1
2

4)()(
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z ,    and             (3.10) 

    

422

2
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4,3
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RCL
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z .                        (3.11) 

 

Substituting in the actual component values from the 25 Hz SA circuit model into 

eqs. 3.10 and 3.11 then gives:  z1,2
  = -347.72   220.0i  and  z3,4

  = -332.2   670.3i. 

 

    For each of Stages 1 and 2 there is a pair of complex conjugate poles for a total 

of four. Setting the denominator for each of these stages equal to zero and solving for the 

roots of the resulting quadratic equations yields the poles: 
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Substituting in the actual component values from the 25 Hz SA circuit model into 

eqs. 3.12 and 3.13 then gives:  p1,2
  = -13.2   389.2i  and  p3,4

  
= -52.1   706.1i. 

 

Recognizing that the imaginary 

coefficient of each pole is its angular frequency, 

the linear frequency is calculated with f = 

| |/2 . The results are f1 = 61.9 Hz for the first 

stage and f2 = 112.7 Hz for the second stage. 

Figure 3.7 is the pole-zero plot in the s (complex 

frequency) plane showing the locations of the 

poles and zeros for Stages 1 and 2. Note that all 

four of the poles are located in the left half plane 

of the plot (Re(s) < 0), indicating that the SA 

circuit model is stable. Also, the poles are all 

relatively close to the imaginary axis. The closer 

the poles are to this axis, the slower is the 

transient decay rate of the circuit [37].   

 

The pole-zero results above are obtained 

for each SA circuit stage independently (i.e., not 

taking into account the interaction between 

successive SA circuit stages).  In order to 

calculate the resonant frequencies (poles) for 

the overall circuit model, the overall transfer 

function, eq. 3.9, is solved numerically following 

substitution of the component values shown in 

Figure A.1.  This is performed over the 

frequency of 0.1 to 200.0 Hz with a resolution of 

0.02 Hz.  The gain results, plotted in Figure 3.8 

along with those from the SPICE theoretical 

analysis for the inductor based SA circuit model, 

reveal that the first pole is located at 62.0 Hz 

and the second at 111.7 Hz.  

Figure 3.7: Pole-zero plot 
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Figure 3.8: Gain vs. frequency (semi-log plot) for the mathematical 

                 model and SPICE inductor-based SA circuit model. 

Figure 3.9: Phase vs. frequency (linear plot) for the mathematical 
          model and SPICE inductor-based SA circuit model. 

 

These match precisely with the SPICE results.  Note that the multiplication of the 

separate stages results in a slight shift (“pull”) of the second pole toward the first pole (by 

about 1 Hz) as compared to the separate poles solution for the second stage.  

 

Figure 3.9 compares the respective phase vs. frequency responses, which also 

overlap almost exactly as is the case for the signal advance results shown in Figure 3.10. 
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Transient Response 

 

Given the complex conjugate pole pair in the left half of the s plane for each stage 

(i.e., a second-order underdamped system as shown in Figure 3.7, their corresponding 

impulse response functions, determined by inverse Laplace transformation, are 

exponentially decaying sinusoids that may be represented as [37]: 

 

                    Ae- t cos( t + φ),                   (3.14) 

in which the oscillation frequency is , the rate of decay is ,  A is the amplitude and φ is 

the phase angle.   

 

For the first circuit stage, the (complex conjugate) poles are -13.2  389.2i, thus the 

time constant is given by 1 = 1/| |  = 1/13.2 s or 75.0 ms.  Similarly, for the second stage, 

the (complex conjugate) poles are -52.1   706.1i, and the time constant 2 = 1/52.1 s or 

19.2 ms.   

Figure 3.10: Group delay vs. frequency (semi-log plot) for the mathematical 
             model and SPICE inductor-based SA circuit model. 
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A transient introduced into a stable system, such as the SA circuit model, will decay 

to 1% of its initial amplitude value in approximately five times the time constant [38]. This 

value would be 375 ms for the first stage and about 96 ms for the second. Based on these 

results and the significantly larger gain at the 62 Hz pole (Figure 3.3), the transient 

response or settling time of the overall SA circuit is  375 ms (corresponding to the longer 

settling time of the first two stages).   

 

The implications of this for the SA circuit are that once “turned on” it should be 

allowed to run with input for at least 375 ms before the circuit output is used for any 

analytical purpose (to be conservative, wait at least 500 ms). In situations where the circuit 

input is controlled in such a way that x(t) = 0.0 for t = 0 (as is the case in this study) there is 

no transient input that can affect the circuit. Here, this condition is satisfied by always 

applying a window function to x(t).  Furthermore, recall that the SA circuit requires a band-

limited input signal.  For applications in which intermittent signal noise or other artifacts 

outside the signal bandwidth exist, the transient response determines the time required for 

an artifact to decay, at which point it would not affect the detected signal in any substantial 

or significant manner.  

 

Gyrator Circuitry 

 

In order to produce the desired temporal advance, the value of the inductive 

component for the first pole is set to over 100 H(enrys). This value of inductance would 

require a very large coil and would be impractical in a physical microelectronic circuit such 

as the one proposed.  In most circuits, physical inductors typically have values measured in 

milli-Henrys (mH) or micro-Henries (µH). Therefore, in order to develop a physically 

realizable circuit, the inductors were replaced by gyrator circuits (see Appendix A, Figure 

A.2). Gyrators use capacitors, resistors and operational amplifiers to simulate large 

inductive impedances [7,8].  The gyrator circuitry used is an ungrounded design in which 

the equivalent inductive reactance for the first pole of the SA circuit model is provided by 

the following equation that estimates the absolute magnitude of the simulated inductance.  

 

       L5  C5(R11R15/R14)R9                                                  (3.7) 
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Following the implementation of this gyrator circuitry to simulate the large inductors 

in the SPICE design, the modified SA circuit model performance was confirmed using the 

SPICE theoretical analysis. The resultant gain and phase response data were used to 

compare the circuit responses for the inductor and gyrator-based SA circuit models using 

SPICE.  Figure 3.11 shows the almost exact overlap of the gain vs. frequency response of 

the inductor-based and gyrator solutions, as well as for the mathematical results (frequency 

resolution of 0.02 Hz). Comparing inductors to gyrators, Figure 3.12 shows similar 

overlapping results for phase vs. frequency, and Figure 3.13 illustrates the signal advance 

vs. frequency.  It is clear that these results are completely consistent with each other. 

While the theoretical gain, phase and group delay responses, shown in Figures 3.11 

through 3.13, are observed to be essentially equivalent, the performance of the two circuit 

models was also compared empirically by applying sine burst test signals to both the 

inductor and gyrator based SA circuit models. The results obtained for both the inductor 

and gyrator-based SA circuit models with application of a 10 Hz sine burst test signal also 

confirm their equivalence (Figure 3.14). 

Figure 3.11: Gain vs. frequency (semi-log plot) for the mathematical model 
                     and the SPICE inductor and gyrator based SA circuit models. 
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Figure 3.12: Phase vs. frequency (linear-linear plot) for the mathematical model 
                      and the SPICE inductor and gyrator based SA circuit models. 

 

Figure 3.13: Group delay vs. frequency (semi-log plot) for the mathematical model 
              and the SPICE inductor and gyrator based SA circuit models. 
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The SPICE schematic (including the gyrator circuits) for the SA circuit model used in 

this study is provided in Appendix A, Figures A.2, A.3 and A.4. Note the voltage divider 

applied to the circuit following the second stage, which reduces the overall circuit gain to 

approximately unity. The associated SPICE net-lists and command sequences for both the 

theoretical AC analyses and transient analyses (for the application of time-domain test 

signals) are also provided in Appendix A. In the remainder of this study, for all the SPICE 

empirical results, the gyrator based SA circuit model is used. 

Figure 3.14: Sine burst (10 Hz) input/output plots for the inductor  
                                      and gyrator based SA circuit models. 
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Initial Input Test Signals  

 

The SA circuit model performance was subsequently tested using Gaussian pulses 

and single frequency sinusoid test signals.  In order to apply the time-domain test signals to 

the SA circuit model, the SPICE transient analysis function is applied. The transient 

analysis makes use of the nonlinear device characteristics and produces circuit output 

signals as a function of time. This analysis requires as well, the application of the digitized 

input signals over a user-specified time period followed by analysis of the sampled output 

signals.  

 

Gaussian pulse and single frequency sine wave input signals with known temporal 

and spectral characteristics were constructed as input test signals for preliminary 

performance testing. The constructed test signals were then applied as inputs to the SA 

circuit model to determine empirically the actual SA circuit model performance.  

 

The Gaussian pulses and sinusoidal test signals were generated in Microsoft Excel 

[39] (using the NORMDIST() and SIN() functions). These functions produced a sampled 

series of amplitude measures (y coordinate) as a function of time (x coordinate). The 

projected temporal advance was 5 ms and the coefficient of variation was expected to be 

less than 5%, or 250 µs.  Thus, in order to accurately capture activity in this very short time 

period, all waveforms were ultimately sampled with a 100 µs resolution (sampling 

frequency of 104/s), which far exceeds the Nyquist criterion (sampling frequency must be at 

least twice the highest frequency of a signal [40]).  Furthermore, using a high sampling rate 

avoids the generation of any output artifact resulting from discontinuities in the input test 

signal (discussed further in the results section below).   

 

 A Gaussian window was applied to all non-Gaussian input test signals used in the 

study. For the single frequency sine wave inputs, the normal distribution function was used 

to generate a Gaussian function equivalent to ten cycles of the sinusoid.  For example, for 

a 1 Hz sinusoid, the Gaussian window has a 10 s duration; at 20 Hz the Gaussian window 

duration is 500 ms. To apply the Gaussian window, the sinusoid is multiplied by the 

Gaussian function (amplitude range from 0 to 1). Application of the Gaussian window 

functions as a low-pass filter, eliminating the introduction of high frequency spectral 
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components that would generate artifact in the output due to the nonlinear gain and group 

delay responses at the circuit resonant frequencies (poles). The resulting digitally sampled 

signals were then formatted for use in the SPICE arbitrary waveform generator function for 

application to the SA circuit.  

 

Initial Circuit Model Performance Testing  

 

The initial signal advance circuit testing used Gaussian pulse inputs with pulse 

widths ranging from 20 to 500 ms (equivalent to one half of the period of 1 to 25 Hz). 

During initial testing the waveform temporal advance obtained was determined by 

comparing the time of the appearance of the pulse peak of the output waveform relative to 

that of the input pulse peak. In addition, the gain was determined by comparing amplitudes 

of the input and output peaks. On confirming a waveform advance of approximately 5.0 ms 

using Gaussian pulse inputs, the circuit model was then tested using single frequency 

sinusoids selected from the spectral range 1 to 25 Hz.        

 

Sinusoids were generated in Microsoft Excel. 

The period is the inverse of the frequency, thus for a 

10 Hz signal the period is 100 ms. To produce a 

signal with a 100 µs sampling rate, the period 

required 1000 samples. Each sinusoid was then 

Gaussian windowed (Figure 3.15) to eliminate “edge 

effects” - the introduction of high frequency spectral 

components due to an abrupt non-zero beginning or 

end of the signal. Gaussian windowed inputs were 

used in the majority of the NGD studies cited here 

due to their rapid spectral roll-off and mathematical 

simplicity of analysis.   

 

SA circuit model performance in terms of waveform advance and gain were initially 

determined by comparing the peaks of the input and output Gaussian pulses.  Similarly, the 

peaks and zero-crossings of the input and output sinusoids were averaged to determine the 

Figure 3.15: Gaussian windowed  

     sinusoids. 
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advance and gain.  It was important to confirm that the advance obtained is not equal to the 

period or half-period of any input signal as the advance would then be indeterminate. The 

likelihood of this occurrence is low, as the shortest period was 40 ms, while the projected 

advance is 5 ms or one eighth of the shortest period to be tested. Also, given the oscillatory 

nature of the SA circuits at frequencies above the design maximum, initial testing was used 

to confirm that for the input test signals 1) the slope of the Gaussian window was 

sufficiently low, and 2) the resolution of the input waveforms was sufficiently high so as to 

avoid introducing spectral artifacts that might result in high frequency oscillations in the 

outputs. Results are included that show the negative effects related to improper, or the 

completely absent, Gaussian windowing and insufficient sampling rate of the input test 

signals.   

 

The initial testing was used to confirm the performance of the SA circuit model with 

regard to the duration and constancy of the temporal advance achieved (5 ms) and gain 

constancy.  Furthermore, the adequacy of the input test signals in terms of resolution and 

windowing were assessed.  Observed deficiencies prompted refinements of the SA circuit 

design as well as test signal refinements. These were followed by retesting. 

 

Initial Circuit Model Test Results 

 

After reviewing the theoretical performance of the SA circuit model utilizing gyrators, 

circuit simulation using input test signals was required to determine the actual circuit model 

performance.  Initial attempts to use the 

available signal generator and a standard 

sine wave resulted in output signals 

containing transient oscillations in the 60 

to 65 Hz range due to the resonance 

associated with the first pole in the SA 

circuit. Figure 3.16 shows the output 

resulting from the application of a 2.5 Hz 

sinusoidal input in which the transient 

higher frequency oscillation “died out” Figure 3.16: Advanced 2.5 Hz sinewave with 
          transient decaying oscillation. 
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prior to the start of the third cycle (by about 500 ms, not inconsistent with the results of the 

theoretical transient decay rate of ≥ 375 ms). This oscillation results from the abrupt 

beginning of the input signal that contains spectral content above 25 Hz, specifically in the 

60-65 Hz range. This result underscores the need to window each of the input test signals 

(excluding the Gaussian pulse inputs).  

 

The limited selection of “built-in” waveform generators as well as the results 

obtained above made it necessary to construct piecewise linear approximations of the 

Gaussian pulse and single frequency sine wave test signals.  In constructing the piecewise 

linear approximations, it was found that a sufficiently high sampling rate was required in 

order to avoid the introduction of any signal discontinuities that might result in artifact 

contamination reflected in the circuit model’s temporally advanced output.  

 

Figure 3.17 shows the results 

obtained when a piecewise linear 

approximation of a Gaussian pulse with 

an insufficient sampling rate (signal 

resolution) was used as input. While the 

output was temporally advanced relative 

to the input, the low sampling rate 

yielded noticeable discontinuities in the 

input signal, resulting in the production 

of a sawtooth-like artifact.  

 

On completing the generation of 

the test signals, specifically Gaussian pulses and Gaussian-windowed sine waves (sine 

bursts), the test signals were applied as inputs to the SA circuit model and results similar to 

those shown in Figure 3.18 were obtained.  The initial set of Gaussian pulse and sine 

bursts test signals had maximum (peak) amplitudes of approximately 2 V. The initial results 

exhibited a peak-to-peak gain of about 1.3 and temporal advance of about 5 ms.  

 

Unlike the results obtained using Gaussian pulse inputs, the temporally advanced 

outputs from the sine burst test signals exhibited distortion in the wave shape at the output 

peak (Figure 3.19). 

Figure 3.17: Results from a Gaussian pulse   

                      with inadequate sampling rate. 
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Figure 3.19: Peak distortion in the peak of the advanced sine burst output 

 

Figure 3.18: Example of the Gaussian pulse results. 
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These results prompted an adjustment in the overall gain of the SA circuit model to 

unity (for a mid-range Gaussian pulse input test signal) which also served to simplify the 

subsequent gain analyses and reduced the output to a maximum of 2 V (peak-to-peak), 

thereby eliminating shape distortion of the output peaks. No such peak distortion was 

exhibited in the inductor-based SA circuit model suggesting that the distortion is related to 

the voltage “headroom” requirements of the gyrator circuit. 

 

As with the Gaussian pulse test signals, for the single frequency sine wave test 

signals (sine bursts), the advance and gain were determined by comparing the time of 

occurrence and amplitude of the peaks of the temporally advanced output with their 

respective inputs.   

 

In addition, the sine bursts also have two zero-crossings occurring in every cycle 

(Figure 3.20). This provides an additional method to determine the temporal advance 

obtained by the SA circuit model. 

         Figure 3.20: Example of the sine burst results 
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Thus, in addition to using the difference in the time of occurrence of the signal 

peaks, the difference in the time of occurrence of the zero-crossings of the temporally 

advanced outputs and the corresponding inputs was also calculated and averaged. The 

means, standard deviations and coefficients of variations were determined from these data.  

 

Table 3.1 summarizes the results obtained for the Gaussian pulse and sine burst 

test signals (detailed results are provided in Appendix A, Table A.2 and A.3).  

 

Table 3.1: Initial SA circuit model test signal results. 

 Gaussian Pulses Sine Bursts 

Statistic 
Peak 

Advance 
Peak Gain 

Peak 
Advance 

Zero-Crossing 
Advance 

Peak Gain 

Mean 4.847 ms 1.02 4.880 ms 4.882 ms 0.997 

Std Dev 0.00924 ms 0.0471 0.0332 ms 0.000123 ms 0.0856 

Cv 1.91% 4.60% 6.80% 4.60% 8.59% 
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Chapter IV  

Constructed Test Signal  

Methods and Results 

 

Constructed Test Signals 

 

 The initial testing described in the previous chapter provided evidence indicating 

that the SA circuit model produced a temporal advance of approximately 5 ms and unity 

gain that are relatively constant over the design spectral range of 1 to 25 Hz. The relative 

constancy of these results supports the hypothesis that an SA circuit model could be 

developed that would minimally distort the temporally advanced output signals relative to 

their respective inputs over the design frequency range.   

 

 The initial results also established and subsequently confirmed the requirements 

for, and adequacy of the piecewise linear approximations of, the continuous test signals, as 

no additional signal artifacts appear to have been introduced that would result in the 

occurrence of high frequency oscillations in the temporally advanced output.   

 

 This chapter describes the thorough and meticulous testing of the SA circuit model 

using a range of constructed test signals including Gaussian pulses, single frequency 
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sinusoids (described in Chapter III) and waveforms consisting of three superposed single 

frequency sine waves. The signal detection temporal advance and gain produced by the 

SA circuit model was rigorously examined by comparing the circuit outputs with their 

corresponding inputs. Circuit distortion is quantified using both time and frequency domain 

analyses. The results obtained provide the necessary foundation for applying SA to human 

ECGs (Chapter V). 

 

Gaussian Pulses 

 

 The first set of input test signals consists of twenty-five Gaussian pulses with half 

amplitude pulse widths ranging from 20 ms to 500 ms. These pulse widths are equivalent to 

one half of the periods of 1 to 25 Hz sinusoids. As described in Chapter III, the signals were 

generated using Excel. The constructed digital representation of each of the twenty five test 

signals were then imported into the SPICE program’s arbitrary waveform generator for 

application to the SA circuit model (for example, Figure 3.13).   

 

Single Frequency Sinusoids (Sine Bursts) 

 Following testing with Gaussian pulse inputs, the circuits were tested with twenty-

five, single frequency sinusoids from 1 to 25 Hz.  As described previously, the Gaussian-

windowed sinusoids (sine bursts) were imported into SPICE for application to the SA 

circuit. Confirmation was required to show that the duration of the temporal advance 

obtained was not equivalent to one or one half period of a test signal frequency, specifically 

not equal to one or one half of one period of the input sinusoid, Shifting a pure sinewave by 

2  or 360o is the same as a zero phase shift and shifting by  or 180o is the same as 

inverting the signal. The probability of this occurrence is quite low as the maximum test 

signal frequency is 25 Hz. Thus, the shortest one half period was 20 ms, while the 

projected temporal advance was 5 ms (see sample Figure 3.15). 
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 Figure 4.2: Superposition. 
 

*Copyright 1994 Agilent Technologies, Inc. 
      Reproduced with permission. 

Tri-Frequency Test Signals  

 

A signal is composed of an infinite 

sum of sinusoids of varying frequencies 

and amplitudes according to the principle 

of Fourier decomposition (Figure 4.1).  

Further, the response (output) of any 

linear system is the sum of the responses 

of the system to each input [12].  

 

Having confirmed the results 

obtained from the application of simple 

sinusoids to the SA circuit model, twenty-

five input test signals were constructed by 

linearly superposing (adding) three randomly 

selected single frequency sinusoids in the 

range of 1 to 25 Hz (Figure 4.2). Thus, these 

test signals, composed of known spectral 

components, were of increased spectral 

complexity relative to both the Gaussian 

pulses and the single burst test signals.  

 

To construct the tri-frequency input signals, 

integer frequencies were randomly selected 

(using the random number function in Excel) 

from each of the following ranges: 1 to 8 Hz, 9 to 16 Hz, and 17 to 25 Hz. In addition, each 

of the three spectral components was scaled by one of three randomly selected factors 

(0.2, 0.3 and 0.45) in order to ensure that their linear combination did not exceed the 

maximum amplitude threshold, in the event that the amplitude peaks or troughs were 

coincident. The randomly selected frequency and attenuation factors were then generated 

in Excel (see Tables B.1 and B.2 in Appendix B).  

 

*Agilent Technologies, Inc. makes no warranty as to the accuracy or completeness of the foregoing material 

and hereby disclaims all responsibility for the use of the material. 

Figure 4.1: Fast Fourier transform.  
 

*Copyright 1994 Agilent Technologies, Inc. 
            Reproduced with permission. 
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 Sinusoids from each of the three frequency ranges listed above were used to insure 

that any advance obtained was constant for a waveform consisting of spectral content 

spanning the 1 to 25 Hz frequency range. The randomly selected single frequency 

sinusoids were scaled in Excel by multiplying the single frequency sinusoids by the 

randomly selected attenuation factor. The three scaled single frequency sinusoids were 

then superposed (time sample by time sample) and the overall duration of the input signal 

was set to twenty seconds.  A Gaussian taper was then applied over the first and last 2 

seconds of the signal. The first half of the taper (0 to 2 s) was applied by multiplying the tri-

frequency composite test signal by the individual values for the first half of the normal 

distribution. The second half of the normal distribution (2 to 4 s) was similarly applied to the 

last 2 s of the test signal. The middle 16 s (steady-state portion) of the test signal was 

multiplied by one. 

 

 Figure 4.3 shows an example of a tri-frequency test signal consisting of super-

imposed 3, 12, and 21 Hz sinusoids. Figure 4.4 is an enlargement of a small portion (2 to 3 

s) of the tri-frequency test signal example. The constructed tri-frequency signals were then 

imported into SPICE for application to the SA circuit model.  

 

 Based on initial testing results, it was anticipated that the duration of the waveform 

advance is such that the actual advance obtained would not be affected by anti-aliasing 

and it was confirmed that the advance obtained was not equivalent to one or one half of 

one period of any of the selected sinusoids (i.e. exhibits a 360o or 180o phase shift). 

Figure 4.3: Tri-frequency test signal 
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Time Domain Analyses 

Temporal Advance 

 

 Using SPICE, the three sets of 25 test signals were applied to the SA circuit model. 

The input and resulting output data were then exported into text files in three columns of 1) 

time, 2) input signal and 3) output signal. The resulting text file for each of the three types 

of signals was then imported into an Excel spreadsheet for later analyses and data plotting.  

 

 During initial circuit testing (Chapter III) the temporal advance achieved was 

estimated by comparing the times of occurrence of the input and output peak(s) and, in the 

case of the sine bursts, by additionally comparing the time of occurrence when the output 

signals crossed the x axis (zero-crossings) with their respective input zero-crossings. 

However, the output peaks as well as the zero-crossings were subject to variation due to 

output signal distortion, including signal skew and output noise, which increased the 

variability of the results. Therefore, cross-correlation analysis was used in order to minimize 

these sources of error variance.  

Figure 4.4: Enlarged region of the tri-frequency test signal. 
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 The cross-correlation function R determines the linear relationship between two 

waveforms as one of them is shifted in time relative to the other [31].  Correlations 

(Pearson r) were calculated at each time point as the temporally advanced output was 

shifted with respect to the input. The time shift (or lag) associated with the maximum 

correlation is equal to the temporal advance imparted by the SA circuit. Cross-correlation 

provides a more objective measure of the advance obtained by taking into account the 

shape of the entire waveform and thus is less affected by various forms of output signal 

distortion. 

  

 The sampling rate used was 104 samples/s, which well exceeds the Nyquist 

criterion [40], and is more than sufficient resolution for the projected temporal advance of 5 

ms.  Let xt denote the tth sample of the input, and yt denote the tth sample of the output. The 

cross-correlation between x and y is:      

 

R(i) = ∑t=i+1 to t (xt-I - µ(x))(yt-1 - µ(y))/( (x) (y)),   i = ±1, ±2, …, ±1500,         (4.1) 

 

where t is the number of data points per 

waveform, i is the lag index, µ( ) and ( ) are 

the mean and standard deviation of the 

respective signals. R(i) yields values 

between -1.0 and +1.0.  For a temporal 

advance of 5 ms, the maximum correlation is 

expected to appear at a lag of 500 which is 

equal to the projected advance divided by 

the sampling resolution, or 5.0 ms/10.0 µs 

(example in Figure 4.5). This method was 

used to verify the duration of the advance obtained.  

 

 Cubic spline interpolation was used to provide a more precise estimate of the 

temporal advance by upsampling the results. This increased the apparent resolution of the 

cross-correlation (without adding any new information) [49].  Using interpolation to find the 

maximum correlation reduced sampling variability in the temporal advance determination 

resulting from the reduction in roundoff errors.    

 

Figure 4.5: Cross-correlation vs. lag. 
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 The maximum cross-correlation in the time domain (used to determine the temporal 

advance achieved) corresponds to the Pearson r between input and output signals 

calculated in the frequency domain, which is independent of time shifts (described further in 

the section on Frequency Domain Analyses, below).  As such, to confirm the validity of the 

use of cubic spline interpolation, the resultant maximum cross-correlations were later 

compared to the correlations obtained in the frequency domain analyses.  In each case the 

interpolated maximum cross-correlation more closely approximated the correlation obtained 

in the frequency domain than did the maximum cross-correlation obtained without first 

interpolating. This confirms the increased accuracy of the maximum cross-correlation 

obtained following interpolation.  

  

Gain 

  

 The gain of the circuit model was assessed in a manner analogous to the rigorous 

determination of the signal detection temporal advance. In the initial testing (Chapter III), 

the amplitudes at the signal peaks were compared to provide an approximate gain 

assessment. However, the peak amplitudes could also have been affected by signal 

distortion. An alternative method would be to calculate the gain by taking the ratio of the 

average amplitude of the output waveform relative to the corresponding input over the 

entire waveform. While applicable to Gaussian pulse signals, the average of symmetric 

signals such as the sinusoids or the tri-frequency signals would approach zero.  

 

 Thus, the SA circuit gain was determined by calculating the Root Mean Square 

(RMS) ratio of the advanced output relative to the input signal. The RMS ratio (unlike the 

peak or average ratios) provides consistent results for a broad range of test signal types.  

For each set of twenty-five test signals (Gaussian pulses, single frequency sinusoids and 

triple-frequency signals), the mean (µ) and standard deviation ( ) for both the temporal 

advance and gain were calculated and used to determine the coefficient of variation: 

 

          Cv = /µ.                                                          (4.2) 
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Figure 4.6: Gaussian pulse temporal advance vs. frequency. 

Temporal Advance and Gain Results 

 

For each set of constructed test signals, the mean, standard deviation and 

coefficient of variation for the temporal advance was calculated. Additionally, the maximum 

cross-correlation between the temporally advanced output signal and the corresponding 

input signal is provided. The results for the Gaussian pulse, sine burst and triple-frequency 

test signals are summarized in Table 4.1 (and detailed results are provided in Tables B.3, 

B.4 and B.5 in Appendix B). The temporal advances as a function of frequency for the 

Gaussian pulse and sinusoidal signals are plotted in Figures 4.6 and 4.7 respectively. 

 

Table 4.1: Constructed test signal temporal advance results. 

 Gaussian Pulse Sine Burst Tri-frequency 

Statistic 
Temporal 
Advance 

(ms) 

Maximum 
Cross-

Correlation 

Temporal 
Advance 

(ms) 

Maximum 
Cross-

Correlation 

Temporal 
Advance 

(ms) 

Maximum 
Cross-

Correlation 

Mean 4.909  0.998968 4.869  0.999756 4.942 0.997750 

Std Dev 0.0047  0.001295 0.0077  0.000336 0.0002 0.001374 

Cv 0.96%  1.59%  0.05%  
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Figure 4.8 is a graph of the empirical Gaussian pulse and sine burst results overlaid 

with the theoretical results obtained from the SPICE AC analysis.  Note the close match 

between the empirical and theoretical results as shown. 

 

For each set of test signals, the mean, standard deviation and coefficient of variation 

for the gain were also calculated. The results for the Gaussian pulse and sine burst test 

Figure 4.8: Plot of temporal advance vs. frequency for the Gaussian pulse  
                    and sine burst results compared to the theoretical results.  
 

Figure 4.7: Sine burst temporal advance vs. frequency. 
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signals are summarized in Table 4.2 (and detailed results are provided in Tables B.3, B.4 

and B.5 in Appendix B). 

 

Table 4.2: Constructed test signal gain results. 

GAIN 

Statistic Gaussian Pulse Sine Burst Tri-Frequency 

Mean 1.00 0.997 1.0018 

Std Dev 0.0267 0.0866 0.03316 

Cv 2.67% 8.68% 3.31% 

 

 

A graph of the gain relative to frequency for the Gaussian pulse and sine burst test 

signals is shown in Figure 4.9. Note that below about 15 Hz the gain is a little less than 1.0 

and above 15 Hz it is slightly greater than 1.0; the circuit gain response is not uniform 

across the frequency range of study (1 to 25 Hz). The sine burst results exhibit a wider 

range of gains (0.91 to 1.18) than do the Gaussian pulses (0.97 to 1.05). 

 

Had the results exceeded the hypothesized variability in terms of either the temporal 

advance or gain over the 1 to 25 Hz frequency range, a polynomial decomposition would 

have been used to more accurately determine the functional relationship (linear, quadratic 

Figure 4.9: Gain vs. frequency for the Gaussian pulse and sine bursts test signals. 
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or higher order) between the signal advance and frequency.  The results of these analyses 

confirmed that for Gaussian pulse, sine burst and tri-frequency test signals, the SA circuit 

produces a temporal advance of 5 ms  5%  or greater with a coefficient of variation of less 

than 5%, and gain of 1.0  10% with a Cv of less than 10%. These results support the 

rejection of the null hypotheses. 

 

In addition, the correlation results (all greater than 0.997) indicate a high degree of 

morphological similarity between the input and output signals strongly suggesting that the 

circuit model produces minimal signal distortion. Although the circuit gain as a function of 

frequency is not constant (and slightly nonlinear), the deviation from slope zero linearity is 

sufficiently small so as to not invalidate the use of correlation as an acceptable measure of 

waveform shape similarity.    

 

Frequency Domain Analyses  

 

 The experiments and analyses described in the previous sections determined the 

signal detection temporal advance achieved for the various input test signals using the 

cross-correlation function in the time domain. The constancy of the gain and temporal 

advance were determined by comparing the temporally advanced output waveforms to their 

respective inputs in the time domain.  In addition, the correlation analyses provided an 

indication of the morphological similarity between the circuit model input and output signals.  

In this section the input-output signal correlations in the frequency domain are examined as 

a cross-check against the time domain results. 

 

Frequency Transformation  

 

 In addition to determining the relationship between the waveform advance and 

frequency (which should exhibit limited variation in the spectral range from 1 to 25 Hz), the 

data collected were used to quantify the output waveform distortion (relative to the input). 

Output signal distortion includes changes in amplitude (i.e., gain distortion) as well as pulse 

shape or width that might cause spectral shifts or generation by the circuit of additional 
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(harmonic) frequencies. A visual comparison of the input and output spectral distributions 

revealed no evidence of either spectral shifts or additional spectral components in the 

output. The only changes in spectral distribution observed were variations in amplitude at 

various frequencies. The observed gain distortion is related to differential changes in 

spectral magnitude or power of the circuit output as a function of frequency. A constant 

scale change in spectral magnitude or power across all frequencies is not considered to be 

a source of distortion (and would not yield a difference in the correlation between the input 

and output signal spectra) [50,51]. 

 

 Quantification and characterization of any resultant distortion required analyses in 

the frequency domain. The input and temporally advanced output waveforms were 

appropriately transformed to the frequency domain using the Fast Fourier Transform (FFT) 

[41].  Symbolically, 

F[x(t)]  =  X(ω),                                                     (4.3) 

 

where F[.] represents the Fourier transformation operator, x(t) represents the circuit input 

signal and X(ω) is its Fourier transform – a complex signal in the frequency domain.  

Taking the absolute value of X (|X|) yields the so-called magnitude spectrum of the signal 

x(t).  In the follow-up, the gain as a function of frequency (Hz) was examined:  

 

G(f) = |Y(f)|/|X(f)|,                                                   (4.4) 

 

where |Y(f)| is the magnitude spectrum of the circuit model output signal y(t). 

 

 Prior to applying the FFT, the time domain results were zero-padded (i.e., zeroes 

are added to the end) to increase the number of time domain data points to a power of 2 

[41].  While there is a Fourier analysis function available in Excel, it has an upper limit of 

4096 data points, which would significantly limit the frequency resolution of the result. Thus, 

after zero-padding the time domain results, FFT’s were performed in SPICE, which does 

not have the same limitations with regard to the number of data points.   

 

 The circuit input and respective output magnitude spectra were then exported into 

text files each containing three columns of 1) frequency, 2) input signal magnitude 

spectrum, and 3) output signal magnitude spectrum. These data were then imported into 
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Figure 4.10: Spectral distribution - Gaussian pulse (40 ms at half amplitude). 

 

Figure 4.11: Spectral distribution - 10 Hz sine burst. 

 

Excel for subsequent analyses and the respective magnitude spectra were plotted as a 

function of frequency. 

 

Figures 4.10, 4.11 and 4.12 are example graphs of the spectra of the input and 

temporally advanced output for the Gaussian pulse, sine burst and tri-frequency test 

signals. The insets show the respective time domain signals. 
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Figure 4.12: Spectral distribution - tri-Frequency test signal.  

Tri-frequency Test Signal Gain  

 

Changes in gain with respect to frequency are reflected in an increase or decrease 

in the magnitude at those frequencies. For the Gaussian pulse and single frequency 

sinusoidal input signals, the gain was calculated directly in the time domain.  Changes in 

gain may also be determined from the spectra as these are reflected as changes in 

magnitude with respect to frequency. Thus, from the spectra, gain as a function of 

frequency was determined by taking the ratio of the output and corresponding input at each 

frequency of the spectral distribution.  This also provided a cross-check of the gain results 

obtained from the time domain analyses for Gaussian pulse and single frequency sinusoidal 

signals. Thus the gain as a function of frequency could be determined in the frequency 

domain for the tri-frequency test signals - a result not obtainable via time domain analyses. 

The gain relative to frequency ranged from 0.958 at 1.0 Hz to 1.097 at 25 Hz.  The detailed 

results for the tri-frequency gain as a function of frequency are provided in Table B.6 in 

Appendix B. 

 

As in the time domain analyses, the results are plotted over the frequency range. 

These results provide additional support for the rejection of the null hypotheses. Figure 4.13 

is a graph of the gain relative to frequency for the Gaussian pulse and sine burst and the tri-

frequency test signals. 
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Figure 4.13: Gain vs. frequency for the Gaussian pulse, sine burst 
                         and tri-frequency test signals. 

 

 Frequency Domain Correlations 

 

 The temporal advance of the output pulse relative to the input does not affect the 

magnitude spectra as the frequency domain representation of the signal contains no 

temporal information. Thus, the correlation between the spectra of the input signal and the 

temporally advanced output should approximate the maximum cross-correlation obtained 

from the time domain analyses. These results are summarized in Table 4.3 for the 

Gaussian pulse, sine burst and tri-frequency test signals respectively (and detailed results 

are provided in Tables B.2, B.4 and B.5 in Appendix B).   

 

Table 4.3: Constructed test signal correlation results.  

Statistic 
Maximum Cross-Correlation 

(Time Domain) 
Correlation 

(Frequency Domain) 

 
Gaussian 

Pulse 
Sine Burst 

Tri-
Frequency 

Gaussian 
Pulse 

Sine Burst 
Tri-

Frequency 

Mean 0.998968 0.999756 0.997750 0.999163 0.999866 0.997750 

Std Dev 0.001295 0.000336 0.001374 0.001824 0.000125 0.001374 

  

 Note the closeness of the results for the Gaussian pulses and sine bursts and the 

virtual equality of the results from the tri-frequency test signals. 
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Output Distortion 

  In the majority of the cited NGD studies, temporally advanced output waveforms 

exhibit significant waveform distortions observed in the frequency domain. These were 

examined in detail with the SA circuit model.  

 

 Figure 2.10 of the Preliminary Results (Chapter II) shows the actual oscilloscope 

traces of the input and advanced output pulse for the early SA physical circuit. The 

distortion in the shape of the output relative to the symmetric input pulse is readily 

observed. Specifically, the output pulse is narrowed and slightly skewed with respect to its 

corresponding input. In the frequency domain, pulse narrowing results in a phase shift to a 

higher frequency and the skewing of the pulse results in the introduction of higher 

frequency components in the output waveform that are not present in the input waveform. 

Given the constancy of both the gain and group delay of the spectral range of interest of 

the SA circuit model under investigation, these types of distortion were not expected to be 

present and in fact were not evident based on visual inspections of the input/output spectral 

distributions. 

  

 The distortion ratio (DR) [44] is determined in the frequency domain by 1) 

subtracting the spectral magnitude of the input from the corresponding spectral magnitude 

of the advanced output at each frequency, 2) the differences are squared and then 

summed over all the frequencies of interest, 3) the result is then divided by the sum of the 

squares of the input signal magnitude over all frequencies, and 4) finally, the square root of 

the result is taken, giving a root mean square ratio.  In equation form: 

 

DR = [ ∑f (Y(f) - X(f))2 / ∑f X(f)2 ]1/2,                                         (4.5) 

 

where the summations are over the frequency range of interest.   

 

 The distortion ratio is also determined in the time domain over the entire 

waveform(s) in a similar manner (replace X(f) by x(t), Y(f) by y(t), and f by t in eq. 4.5).  In 

the time domain, however two additional steps are required. The output waveform must be 

shifted back in time relative to the input in order to align the input and output signals. 

Having shifted the output, the beginning of the input waveform and the end of the output 



 

68 
 

waveform will no longer have corresponding amplitudes from which a difference can be 

obtained. Thus the beginning and end portions, respectively, of the input and output 

waveforms must be truncated by a time period equivalent to the temporal advance.   

 

 As this measure is related to signal energy or power, calculating the distortion ratio 

over the entire waveform in the time domain, and from its frequency representation over the 

waveform’s spectral range, should yield comparable results since the differences in signal 

energy or power are unaffected by Fourier (linear) transformation [32].  

 

 The distortion ratio results are summarized in Table 4.4 (and detailed results for 

each of the test signals are provided in Table B.7, Appendix B).   

 

Table 4.4: Tri-frequency test signal distortion ratios (%). 

Statistic 
Time  

Domain 
Frequency 

Domain 

Mean 7.09 7.08 

Std Dev 0.02495 0.02497 

 

 From the results of the gain analyses and the theoretical gain response of the SA 

circuit model, it is evident that variation in gain accounts for the majority of the overall 

output distortion.  Further, the distortion attributable to gain rises considerably for spectral 

content above 25 Hz. In electrocardiology, a number of pathologies are reflected in 

deviations from the normal ECG timing rather than deviations in ECG amplitudes.  

 

 The R-R interval determines the heart rate and is used to diagnose various 

arrhythmias including bradycardia and tachycardia [195]. A decrease in R-R interval 

variability, indicative of autonomic dysfunction (i.e., low parasympathetic activity), often 

precedes atrial fibrillation and is associated with an increased risk of primary heart attack 

and sudden cardiac death [196-198]. 

 

 The P-R interval is associated with the time required for atrial depolarization and the 

subsequent initiation of ventricular depolarization. A prolonged P-R interval (in excess of 

0.2 s) indicates an atrioventricular block [195,199].  
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 A prolonged QT interval (that corresponds to ventricular repolarization time) is 

associated with polymorphic ventricular tachycardia (torsade de pointe) and sudden cardiac 

death [195,199]. Thus, there is an interest in quantifying the morphological dissimilarity 

between the input and output waveforms, which is, for the most part, less related to 

differences in the gain. 

  

 With the exception of gain differences, the distortions impact the correlation 

between the spectral content of the advanced output signals and their corresponding 

inputs. Specifically, if output signal distortion only results from a scalar (constant with 

respect to frequency) change in gain relative to the input, then the correlation between the 

input and output signals will be uniquely 1.0 indicating that the two signals are a perfect 

morphological (waveform shape) match.  

 

The Pearson r (linear correlation) provides a measure of the morphological similarity 

between the advanced output spectrum and its corresponding input spectrum while 

correcting for the overall scale amplitude difference between the two signals [45-49}.   

Waveform dissimilarity in the time or frequency domain may therefore be defined as the 

difference between perfect correlation (1.0) and the maximum cross-correlation (rMAX) in the 

time domain, or as 1.0 minus the correlation between the input and output magnitude 

spectra (rMSP) in the frequency domain. 

 

 Thus, for the Gaussian pulses, sine bursts and tri-frequency test signals, waveform 

dissimilarity was determined from the input/output correlations.  The summary of these 

results is shown in Table 4.5. 

 

Table 4.5: Input/output waveform dissimilarity (%) for the constructed test signals. 

 Waveform Dissimilarity (100 * (1.0 - rMSP) ) 

Statistic Gaussian Pulse Sine Burst Tri Frequency 

Mean 0.10 0.02 0.23 

Std Dev 0.13 0.03 0.14 

  

 In summary, the mean distortion ratio is under 10% for each of the constructed test 

signals.  In addition, waveform dissimilarity is less than 0.3% for all constructed signals. 

These results support the rejection of the null hypotheses.   
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Chapter V 

Application to ECG Signals 

 

 In the previous experiments, the SA circuit model was developed and rigorously 

tested with three types of constructed input signals. The gain and signal detection temporal 

advance were analyzed to confirm the SA circuit model performance and the concomitant 

waveform output signal distortion was estimated. The goal of this research is to determine 

the effects of temporally advancing ECG signal detection using the SA circuit model. The 

key objectives of the investigation are to determine the constancy in terms of the gain and 

temporal advance achieved and to characterize any resulting distortion. To maximize the 

signal resolution, the ECG is segmented into individual heartbeats.  The ECG waveforms 

from the five subjects used here are wideband: they are neither low-pass nor notch filtered 

to remove 60 Hz line noise. 

 

 Of the five sets of unfiltered ECG recordings, two of the subjects were recorded at a 

sampling rate of 1 kHz [42] and three of the subjects [43] were recorded at a sampling rate 

of 200 Hz. Thus the majority of the analyses were limited to a frequency range of 0.5 to 100 

Hz based on the Nyquist criterion (one half of 200 Hz). Twenty individual ECG heartbeat 

waveforms from each of five subjects were used. These include ECG waveforms of three 

subjects exhibiting a normal sinus rhythm and two subjects exhibiting tachycardia. Thus, a 

total of one hundred individual heartbeats are temporally advanced. This was deemed to be 

an adequate sample based on means, standard deviations and group differences 

determined in the previous experiments using the constructed test signals.  
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ECG Signals – Individual Heartbeats 

 

 Each of the five subject’s ECG recordings was reviewed using AAELVIEW signal 

analysis and measurement software [42].  A series of twenty consecutive sinus rhythms 

(i.e., individual heartbeats) was extracted from each subject’s ECG. These data files were 

imported into Excel in separate columns of time and amplitude values and then plotted.    

 

 The ECG recordings were segmented based on the R-R interval of consecutive 

heartbeats. Specifically, the point of segmentation was chosen to be the midpoint between 

successive R-waves.  This segmentation point was between the end of the U-wave and the 

beginning of the subsequent P-wave of each heartbeat.  Using this approach, twenty 

contiguous ECG segments each centered roughly near the peak of the R-wave of the QRS 

complex were extracted per subject.  

 

 The average amplitude of each ECG segment was calculated and subtracted from 

each signal to eliminate the DC offset. Each segment was then Gaussian tapered at each 

end to eliminate high frequency ringing artifact at the beginning and end of each waveform.  

Application of the Gaussian taper to the ECGs was similar to its application to the tri-

frequency test signals, except that the duration of the taper was 50 ms applied to the 

beginning and end of each ECG segment.   

 

 Figure 5.1 shows an ECG segment (individual heartbeat) in which the DC offset was 

not subtracted. This ECG is from lead III (LA(-) to LF(+)). The subject has coronary artery 

disease and has had a previous myocardial infarction. The overall ECG also displayed 

short periods of ventricular tachycardia, atrial and ventricular premature depolarization, and 

right bundle branch pattern. Notice the slight negative DC offset at the beginning of the 

signal (circled) as well as the oscillatory artifact in the output. The abrupt, non-zero signal 

start introduces an impulse artifact that contains high frequency content in which 

frequencies between 60-65 Hz were amplified over five-fold. This had a significant effect on 

the output signal QRS peak.  

 

 The individual heartbeat signals were imported into SPICE for application to the SA 

circuit model. The time domain results obtained from the SPICE circuit simulation were 
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then imported into Excel in three columns of 1) time, 2) input signal amplitude values and 3) 

output signal amplitude values. The two signals were plotted and the spreadsheet was 

retained (saved) for subsequent analyses (Figure 5.2). Note the reduction in the advanced 

output artifact for the same ECG signal used in Figure 5.1. 

 

  

Figure 5.1: Human heartbeat - input and temporally advanced output with artifact 
                        (lead III: LA(-) to LF(+)). 
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A short series of heart beats was also applied to the SA circuit model to confirm the 

ability to temporally advance the detection of a continuous ECG signal. Figure 5.3 shows 

the results for four consecutive heartbeats. Note that the signal advance achieved is fairly 

constant from the first heartbeat to the last. 

Figure 5.2: Human heartbeat - input and temporally advanced output 
                            (lead III: LA(-) to LF(+)). 
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Temporal Advance/Gain Analyses and Results 

   

 The duration of the waveform advance achieved was quantified by using a cross-

correlation to find the time lag associated with the maximum correlation between the input 

and temporally advanced output [31].  In addition, the overall gain of the output relative to 

the input was determined using the same analytic methods described in the Time Domain 

Analyses section of Chapter 4. The mean, standard deviation and coefficient of variation 

were determined for each subject. The individual overall gains (based on the RMS 

amplitude ratio) ranged from a low of 0.959 to a high of 1.047. The results obtained from 

the application of the ECG test signals to the SA circuit model are summarized in Table 5.1 

(See Tables C.1 to C.5 in Appendix C for detailed results for each subject). These results 

support the rejection of the null hypotheses. 

Figure 5.3: Temporally advanced detection of four consecutive heartbeats. 
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Table 5.1: Averaged ECG temporal advance/gain results. 

 

  

 As described previously, the time domain results (input/output amplitude vs. time) 

are first zero-padded as needed. The FFT is appropriately applied to the ECG individual 

heartbeat results using SPICE.  The raw magnitude spectrum is computed from the FFT 

results, and then exported into Excel in three columns of 1) frequency, 2) input signal 

magnitude spectrum and 3) output signal magnitude spectrum. The results are plotted and 

saved for subsequent analyses (Figure 5.4). 

Subject Statistic 
Advance 

(ms) 
Correlations 

Time (max)      Frequency 
Gain 

      

RJ Mean 4.940  0.996806 0.996846 1.018 

 Std  Dev 1.053E-15 0.000159 0.000141 0.0018 

 Cv 2.131E-16   0.18% 

      

EG Mean 4.897 0.995036 0.992851 1.018 

 Std  Dev 0.0744 0.002043 0.003281 0.0131 

 Cv 0.0152   1.29% 

      

VS Mean 4.940 0.997810 0.997736 0.993 

 Std  Dev 8.899E-16 0.000216 0.000235 0.00198 

 Cv 1.801E-16   0.20% 

      

MH Mean 4.937 0.996783 0.996825 0.995 

 Std  Dev 0.00251 0.000184 0.000180 0.00213 

 Cv 0.00051   0.21% 

      

MJ Mean 4.935 0.998473 0.998578 0.964 

 Std  Dev 0.00197 0.000482 0.000435 0.00380 

 Cv: 0.00040   0.39% 

      

Overall Mean 4.930 (ms) 0.997 0.997 0.997 

 Std  Dev 0.0366 0.0015 0.0025 0.0046 

 Cv 0.74%   0.45% 
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 Note the elevated noise level in the spectral distribution of the temporally advanced 

output in the 60-65 Hz range resulting from the differentially large amplification in that 

range. Recall that the ECG recordings used for this study were completely unfiltered. In a 

typical clinical setting, the ECG recordings are low-pass and notch filtered around 60 Hz to 

eliminate these artifacts.  

 

 The gain as a function of frequency was derived from the spectral distribution of the 

inputs and their corresponding outputs. The average gain relative to frequency over the 

spectral range from 0.5 to 25 Hz is plotted for each of the five subjects in Figure 5.5. In 

addition, the Pearson r was computed from the spectral distributions using the methods 

described previously.  

 

 Figure 5.6 is a graph of the gain as a function of frequency for the averaged ECG 

results and the constructed test signals over the same spectral range.  

Figure 5.4: Spectral distribution of an individual heartbeat ECG 
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 Unlike the constructed test signals, the ECG signals contain spectral content well 

above 25 Hz.  Figure 5.7 is a graph comparing the empirical gain vs. frequency against the 

theoretical gain curve from the AC analysis up to 200 Hz.   

Figure 5.5: Average gain vs. frequency for each subject. 

Figure 5.6: Gain vs. frequency for the ECG’s and constructed test signals. 
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 Recall that three of the ECG recordings were sampled at 200 Hz, while two were 

sampled at 1,000 Hz. Thus, per the Nyquist criterion, the analysis of the spectral data 

results was limited to 100 Hz for three of the ECG datasets. Therefore the empirical gain 

response shown in red was derived from 100 individual heartbeats (5 subjects - 20 signals 

each) whereas the gain response shown in green, from 40 individual heartbeats (2 subjects 

- 20 signals each). There is a close match between the theoretical curve and the two 

empirical curves. Note the significantly reduced gain around the pole frequency locations of 

the empirical results.  Had the data been filtered, as is the usual clinical practice, there 

would likely have been very little spectral content around the SA circuit model poles.  

 

Distortion Analyses 

Overall Distortion 

  

 For the ECG signals, the distortion ratio calculations (defined in the last chapter) 

were made for the following frequency ranges: 0.5 to 25 Hz, 25 to 200 Hz, 25 to 100 Hz 

Figure 5.7: Gain vs. frequency for the ECG signals compared to 
                   the SPICE gyrator based SA circuit model analysis. 
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and 0.5 to 200 Hz. Note that the ECG recordings from two of the five subjects extend to 

200 Hz (1,000 Hz sampling rate), the remaining three go only to 100 Hz (200 Hz sampling 

rate). The results are summarized in Table 5.2 (and detailed results per subject are 

provided in Tables C.6 to C.10, Appendix C). Note the closeness between the mean 

distortion ratios (DR) measured in the time domain for each subject and averaged over 

subjects (mean 7.90 ± 0.70) and those of the frequency domain (0.5 to 100 Hz: mean 7.81 

± 0.66). 

 

 Regarding the time domain measure of the distortion ratio, the output is first shifted 

to align with the input (the time points of each wave must be aligned prior to computing the 

DR. As a result, both the output and input waveforms must be truncated by approximately 5 

ms.  In the frequency domain, however, the entire signal can be used to compute the input 

and output magnitude spectra. Therefore, of necessity, the signals used to compute the 

distortion ratio in both domains are slightly different, which accounts for a portion of the 

difference in their respective mean distortion ratio results.  The remaining very small 

difference between the two distortion ratio measures can be attributed to round-off error. 

 

Table 5.2: Distortion ratios over various frequency ranges (%).  

Subject Statistic Time 
0.5 to 100 

Hz 
0.5 to 25 

Hz 
25 to 100 

Hz 
25 to 200 

Hz 

       

RJ Mean 8.29 8.21 6.39 40.50 40.61 

 Std Dev 0.23 0.21 0.10  1.46   1.44 

       

EG Mean 10.07 9.87 6.48 60.83 63.41 

 Std Dev 2.16 2.02 0.65 14.07 17.88 

       

MH Mean 6.77 6.65 5.16 63.12  

 Std Dev 0.40 0.35 0.08   5.03  

       

MJ Mean 7.98 7.94 5.84 48.18  

 Std Dev 0.23 0.23 0.06   3.16  

       

VS Mean 6.38 6.36 5.38 73.46  

 Std Dev 0.48 0.47 0.19   9.58  

       

Overall Mean 7.90 7.81 5.85 57.22 52.01 

 Std Dev 1.46 1.40 0.59 12.97 16.12 
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 These results (Table 5.2) show that the majority of the overall distortion occurs in 

the spectral range of 0.5 to 25 Hz. The ECG test signals used in this study had not been 

(pre)filtered, thus they contain spectral content above 25 Hz. In clinical practice, this 

spectral content would normally be reduced or eliminated through first filtering the acquired 

ECGs. The input signals were analyzed to determine the relative distribution of spectral 

content above and below 25 Hz. The average results over all of the subjects showed that 

spectral content below 25 Hz accounts for 93.2% of the total amount, while 6.8% comes 

from spectral content above 25 Hz. (detailed results on a per subject basis are provided in 

Tables C.11 and C.12 in Appendix C). Thus, given the overall distortion results, less than 

7% of the ECG signal’s total spectral content accounts for the difference between the 

overall distortion ratio and that in the 0.5 to 25 Hz range. The distortion results taken 

together support the rejection of the null hypotheses. 

 

Input/Output Waveform Dissimilarity 

   

 Correlation may be used as a measure of the morphological similarity between two 

waveforms [44-49].  Additionally, as stated by Semmlow [50], “in correlation the coefficients 

are normalized to fall between zero and one. This makes the correlation coefficients 

insensitive to variations in the gain … or of the scaling of the variables.”  Based on the use 

of correlation coefficients as a measure of waveform similarity, its complement, 

dissimilarity, is naturally defined as the difference between perfect correlation (1.0) and that 

between the input and its respective output magnitude spectra (rMSP). It therefore provides 

a relative measure of the morphological dissimilarity between the waveforms that is not 

affected by the gain variation [50,51]. The results of the waveform dissimilarity (WD) 

analysis, summarized in Table 5.3, support the rejection of the null hypotheses (detailed 

results are provided in Table C.13 in Appendix C).  

 

Table 5.3:  ECG input/output waveform dissimilarity for each subject (%). 

 
Waveform Dissimilarity (100 * (1.0 – rMSP)) 

Statistic RJ EG VS MH MJ 

Mean 0.32 0.46 0.23 0.30 0.10 

Std Dev 0.0143 0.1488 0.0962 0.0185 0.0314 
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Input/Output Variability 

 

 To determine the increase in the variability of the ECG output signals relative to 

their corresponding inputs, three output waveform parameters were selected. The first two 

were the time of occurrence (time) and amplitude at the peak of the QRS complex of the 

ECG (circled in Figure 5.8). Given the rapid change in slope at this point of the ECG, it 

should exhibit the most variation in both time and amplitude making these parameters very 

sensitive to distortion. The last parameter was the RMS value for each waveform used 

previously to determine gain. This value provides an indicator that is less sensitive to 

distortion as it is averaged over all of the time points in the signal.  

 

 The QRS peak time and amplitude and 

the RMS value of each ECG input and 

corresponding output (20 per subject) were 

measured. The mean and standard deviation for 

each parameter were calculated for each 

subject’s ECG signals. The F-test was then used 

to compare the variance of each input parameter 

to that of the respective output parameter (F in 

this case is equal to the ratio of output to input 

variance with 19 degrees of freedom).  In addition, the correlations between the inputs and 

advanced outputs were determined for each subject. The results are summarized in Table 

5.4 (and detailed individual results are provided in Tables C.14 to C.18 in Appendix C). 

 

 If the F-test results in a significance level of p < 0.05, then the data support the 

assertion that there is a statistically significant difference in the variability of the circuit 

output parameter relative to its input parameter.  For only one subject (EG), one of the F 

test results (p < 0.0015) indicates that the variability of the QRS peak amplitude of the 

output is significantly different from that of the input.  For all of the other subjects the F test 

results indicate no significant circuit input-output differences in variability of the QRS peak 

amplitudes.  For the other two parameters, time of occurrence of the QRS peak and the 

RMS amplitude, there is no indication of significant variability difference in the output 

relative to the input. 

Figure 5.8: Human ECG QRS peak. 
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In order to obtain a statistical result for all five subjects, Fischer’s method for 

combining F-tests [52], is used to compute the overall significance level: 

 

P = -2 ln(πi pi ),                                                      (5.1) 

 

where the pi are the individual (5) subject’s F-test p values (and πi signifies multiplication of 

the pi altogether).  The overall significance level is then determined using a Chi-square test 

with 2N (in this case, 10) degrees of freedom. The resulting overall p < results are as 

follows: QRS peak amplitude: 0.1545; QRS peak time: 1.0; RMS amplitude: 0.9728.  Thus, 

there is no indication of significant variability difference in the output parameters relative to 

their respective input parameters across all subject-sets.  In addition, the correlations 

between all subjects’ input and output parameters ranged from 0.91 and 1.00. These 

results support the rejection of the null hypotheses.   

 

Interbeat Variability 

 

 A series of eight consecutive heartbeats was selected from each subject’s ECG 

recordings in which there appeared visually to be little fluctuation. The cross-correlation 

was found between each of the eight consecutive heartbeats providing twenty-eight 

interbeat cross-correlations for each of five subjects. The maximum correlations were then 

averaged to determine the interbeat variability of each subject’s sinus rhythms. Table 5.6 

provides a summary of the parameters measured.  This interbeat variability provides a 

physiological reference for the correlations between the ECG input and output signals (n-

20) from the circuit model.  

 

 Table 5.5 also includes the p level of statistical difference between each subject’s 

interbeat correlation and their respective circuit input-output correlation in both the time and 

frequency domains. In each subject’s case, comparing interbeat correlation and time 

domain circuit input-output correlation, the difference is statistically significant at the 0.05 

level as shown. These results suggest that no significant additional variability is introduced 

by the SA circuit model, beyond each subject’s natural interbeat ECG variability. 
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Table 5.4: Statistical comparison of the three variability parameters of ECG signals. 

  INPUT  OUTPUT 

Subject Statistic 
Peak 
Ampl. 
(mV) 

Peak 
Time 
(ms) 

RMS 
(mV) 

 
Peak 
Ampl. 
(mv) 

Peak 
Time 
(ms) 

RMS 
(mV) 

         

EG Mean 2.2510 0.5585 2.366  2.3557 0.5564 2.409 

 Std Dev 0.0934 0.0572 0.0777  0.2021 0.0577 0.0969 

         

 * p < 0.0015 0.9743 0.3438     

 Pearson r 0.9151 0.9998 0.9560     

         

RJ Mean 1.6161 0.3025 2.214  1.6861 0.2977 2.254 

 Std Dev 0.0534 0.0191 0.0759  0.0543 0.0191 0.0785 

         

 * p < 0.9449 0.9990 0.8814     

 Pearson r 0.9678 0.9999 0.9988     

         

MH Mean 0.5634 0.2818 0.972  0.5736 0.2770 0.9672 

 Std Dev 0.0306 0.0437 0.0514  0.0316 0.0439 0.050 

         

 * p < 0.8993 0.9827 0.9369     

 Pearson r 0.9898 0.9999 0.9993     

         

MJ Mean 0.5088 0.2564 1.412  0.5100 0.2528 1.361 

 Std Dev 0.0830 0.0332 0.2336  0.0739 0.0334 0.2198 

         

 * p < 0.6161 0.9830 0.7924     

 Pearson r 0.9973 1.0000 1.0000     

         

VS: Mean: 1.5081 0.4140 1.686  1.5833 0.4089 1.673 

 Std Dev 0.0518 0.0670 0.0715  0.0509 0.0670 0.0683 

         

 * p < 0.9395 0.9985 0.8453     

 Pearson r 0.9802 1.0000 0.9994     

         

Overall ** p < 0.1545 1.0000 0.9728     

         
  

    * from the F test for variance differences.    

  ** combined result from the Chi-square test (using Fischer’s method)  
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Table 5.5: ECG interbeat vs. input/output correlations. 

      Correlations 

Subject: Statistic Interbeat Time (max) Frequency 

     

RJ: Mean 0.99057 0.99681 0.99685 

 Std Dev 0.006148 0.00016 0.00014 

 * p <  0.0418 0.0401 

     

EG Mean 0.985771 0.99504 0.99285 

 Std Dev 0.010799 0.00204 0.00328 

 * p <  0.0465 0.1357 

     

VS Mean 0.993167 0.99781 0.99774 

 Std Dev 0.004248 0.00022 0.00024 

 * p <  0.0351 0.0392 

     

MH Mean 0.984707 0.99678 0.99683 

 Std Dev 0.007494 0.00018 0.00018 

 * p <  0.0064 0.0060 

     

MJ Mean 0.974946 0.99847 0.99858 

 Std Dev 0.021486 0.00048 0.00044 

 * p <  0.0000 0.0000 

     

Overall Mean 0.986 0.997 0.997 

 Std Dev 0.0100 0.00062 0.00086 

       

              * Tested using Fischer’s conversion of each correlation to a z-score and standard  

      error calculated as square root of [(1/(28-3) + 1/(20-3))]. 
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Chapter VI 

Conclusions and Discussion 

Overall Results 

 

 This investigation had three major objectives to be met in testing the hypothesis that 

ECG waveform detection (specifically, individual heartbeats) could be temporally advanced 

by approximately 5 ms using a single-stage SA circuit model and that the output distortion 

would be limited to ten percent or less.   

 

In order to test the main hypotheses, the following performance goals were 

established for the SA circuit model:  

 

1) Temporal advance of ECG waveforms by 5 ms (  5% or 0.25 ms) with a 

coefficient of variation (Cv) of less than 5%, 

  

2) Mean gain of 1.0  5% with a Cv of less than 10%,  

 

3) Total output distortion of less than 10%, 

 

4) A  statistically insignificant increase in variance (based on the F-test comparing 

multiple input and output ECG waveform features),   

 

5) Input/output waveform dissimilarity of less than 1%. 
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The first research objective was the development of an SA circuit model designed to 

operate over the frequency range of 1 to 25 Hz. The circuit model developed by the 

investigator for this study combined several features from two previously developed circuit 

models that operated over the 0.5 to 500 Hz and 0.5 to 100 Hz frequency ranges 

(described in Preliminary Results, Chapter II), circuits described in the cited literature [3-5] 

(also discussed in Chapter II) and cascaded physical circuitry developed “in-house.” 

 

The SPICE AC analyses confirmed the theoretical performance of the SA circuit 

model design. Test signals (Gaussian pulses and single frequency sinusoids) of known 

spectral content were constructed and applied to the SPICE circuit simulation to confirm 

that the circuit model performed adequately in terms of the gain and temporal advance.  In 

addition, the procedures for generation of the test signal construction were validated.  

 

The second research objective was the rigorous testing of the circuit model using 

three different types of test signals of known spectral content. The data analyses, 

performed in both the time and frequency domains, yielded results in terms of the temporal 

advance achieved, the gain and output distortion. For all three types of test signals, over 

the design frequency range (1 to 25 Hz) the temporal advance achieved was 4.9 ms with 

(overall) Cv of less than 2%.  The gain averaged 1.0 with a Cv of less than 9%.  The total 

distortion ratio was less than 7% and the input/output waveform dissimilarity was less than 

0.3%.  

 

These results provide strong evidence supporting the rejection of the null 

hypotheses of this study.  In addition, the outcomes provide bases for the analyses and 

interpretation of the ECG test results. 

 

For the third research objective, ECG test signals from five subjects, three exhibiting 

normal cardiac rhythms and two exhibiting tachycardia, were prepared and applied to the 

SA circuit model. The time and frequency domain analyses used for the second research 

objective were applied to the ECG signal data.  

 

The overall results obtained in this study are summarized as follows: 
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 Temporal advance: 4.93 ms and Cv of less than 1% (Figure 6.1). 

 

 Gain: 0.997 and Cv of less than 0.5% (Figure 6.2).  

 For the ECG and tri-frequency test signals the mean distortion ratio is less 

than 8%. Over the frequency range of 0.5 to 25 Hz, it is less than 6% (Figure 

6.3). 

Figure 6.1: Overall temporal advance results. 

Figure 6.2: Overall gain results. 



 

88 
 

 

 Based on the Chi-square test applied to the overall ECG results, the 

variance between the three input and output parameters was found not to be 

statistically different.  

 

 The mean input/output waveform dissimilarity is less than 0.3% (Figure 6.4).  

 

Further, the correlations between input and output parameters averaged 0.997. 

 

For the time of occurrence of the QRS peak parameter, the F-test was also applied 

following the subtraction of the individual temporal advances from the output. While the 

results were essentially the same, the study goal was to determine the overall effect on 

variability which necessarily includes variability associated with the temporal advance of the 

signal and thus the adjustment was ultimately not used.  

 

Figure 6.3: Input/output distortion ratios 
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In a separate analysis, the input/output correlations were compared to correlations 

between successive heartbeats in each subject’s ECG recording. The mean interbeat 

correlation over all subjects was 0.986 with a standard deviation of 0.01, whereas the mean 

circuit model input/output correlation was 0.997, with a standard deviation of less than 

0.001 (see Table 5.6). Thus, the variability resulting from the application of ECG signals to 

the SA circuit model is much less than among successive heartbeats in each subject’s ECG 

recording.  Also, the significance level (p) of the difference between each subject’s interbeat 

correlations and the respective SA circuit input/output correlations suggests no additional 

variability was introduced by the SA circuit model beyond that attributable to each subject’s 

natural beat-to-beat variability.  

 

On the basis of the above results, the null hypotheses of this study are not 

supported. The SA circuit model provides a signal detection temporal advance of 

approximately 5 ms with fairly constant gain close to 1.0, with total distortion under 10% 

and with input/output waveform dissimilarity under 1%.  

 

Figure 6.4: Input/output waveform dissimilarity. 
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Example Applications    

 

To date, no published studies have been found in which the ability to temporally 

advance electrophysiological signals has been demonstrated. The results described here 

enable a range of possibilities, all of which will require further investigation. Seven potential 

applications for signal advance technology are described.  For some of these applications, 

it may be five to ten years before the utility will be realized; for others the benefit might well 

be more immediate. This list is intended to highlight the range of possibilities and is by no 

means exhaustive.  

 

Electrocardiology   

 

In 2004, there were roughly 2.4 million patients with pacemakers and 460,000 with 

implantable cardioverter-defibrillators (ICD's). These numbers were expected to increase at 

an annual rate of 5% and 14-22% respectively [59] to over 3 million and 1 million by 2010.   

 

The earliest pacemakers stimulated at a constant rate without adjusting for varying 

physiological demands. They could thus potentially pace during a naturally occurring T 

wave, which could cause tachycardia or fibrillation. Integrated circuits were added to sense 

atrial/ventricular signals and provide programmable functionality in “demand” type 

pacemakers. Later improvements, including microprocessor use, allowed for dual-lead 

placement, sensing and stimulation [61,62]. More recent advances include the development 

of cardiac resynchronization therapy (CRT) [63-65], implantable cardioverter defibrillators 

(ICD) [66-68], and improved rate-response (i.e., adaptive) pacing algorithms as well as 

other improvements related to enhanced pacing [61,62,69]. Recent investigations have 

focused on the application of pacing technology in the management of cardiac tachycardia 

and fibrillation [70-74].  

 

Early detection and intervention are crucial as anti-tachycardia therapies are most 

effective the earlier the delivery following onset [76,77]. Ventricular fibrillation, a critical 

arrhythmia that can quickly lead to sudden cardiac death, “… begins as a coarse, irregular 

deflection on the ECG, then degenerates to a fine, irregular pattern, and eventually 
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becomes asystole. The probability of successful defibrillation decreases as the VF 

(ventricular fibrillation) waveform becomes smoother with time.” [78,79]. However, the 

detection and discrimination of cardiac arrhythmias in the cardiac signal are often 

confounded by the overlap of signals from multiple sources which have precipitated the 

development of numerous detection algorithms attuned to particular types of arrhythmias.   

 

For example, spectral ECG analysis is used to analyze F-waves (superposed on the 

QRST waveform) to distinguish atrial flutter from atrial fibrillation [80].  In the case of 

ventricular arrhythmias, early repolarization (which generates the T-wave in a normal sinus 

rhythm), indicative of ventricular tachycardia overlaps the ST segment of the QRST 

manifesting as an increased amplitude. [81]. Variations in R-R intervals, indicative of high 

ventricular rates may overlap supraventricular tachycardia [82].   

 

Discriminating atrial fibrillation/tachycardia that precipitates a rapid ventricular 

response from true ventricular tachycardia/fibrillation is difficult [82]. A saw-tooth pattern in 

the ECG, indicating atrial flutter, may overlap with ventricular repolarization, confounding 

correct diagnosis [83]. Discrimination of ventricular fibrillation from other arrhythmias given 

the very short time available for intervention to avoid lethal consequences is of particular 

interest [78,81]. Thus, several detection methods are being investigated that will provide 

real-time feature extraction/classification to distinguish between supraventricular and 

ventricular arrhythmias [84-87].     

 

Several of the methods used to reveal these “masked” anomalies include both time-

domain and spectrotemporal analysis of ECG’s in which several cardiac signals are 

averaged to reduce signal interference and reveal slight variations in the QRST complex 

[88,89].  Another method involves subtracting a template QRST complex from the ECG 

followed by spectral analysis to detect fibrillation waves. [80,91]. Spectral analyses are 

employed in these methods to distinguish the unique frequency content of various cardiac 

arrhythmias [92].     

 

The application of SA circuitry to ECG detection and analysis may provide a viable 

mechanism to temporally advance cardiac waveform detection. However, regarding cardiac 

pacing (the original target application), ECG detection algorithms require acquisition of at 

least a few consecutive heartbeats to determine their timing characteristics before initiating 
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a response [69,71]. As such, the temporally advanced detection of each beat would be of 

little benefit.  

 

For ICD’s, “much of the progress in ICD detection algorithms in the past 15 years 

has been in the development of supraventricular tachycardia discrimination algorithms to 

reduce the number of inappropriate therapies delivered by ICDs.” [82]. SA technology may 

provide a mechanism to temporally separate various components of the ECG based on the 

spectral content by advancing some components while delaying others. The spectral 

content of normal cardiac rhythms, for which the SA circuit used in this study was designed, 

contains harmonics up to about 25 Hz [53].  

 

The rapid irregular heart rates associated with atrial fibrillation (and connected with 

increased risk of heart failure, stroke and death) are typically 350 to 400 beats-per-minute 

[74] - well under 10 Hz. As such, a longer duration of ECG detection temporal advance (10 

ms or more) might be obtained for SA circuitry designed to detect fibrillation waveforms.  

 

Further, supraventricular tachyarrhythmia is typically masked by the much larger 

amplitude ventricular QRST complex.  

 

Differential SA technology, using multiple spectrally tuned bands of single-stage SA 

circuits in parallel (Figure 2.7), has the potential to temporally shift overlapping ECG 

components thereby unmasking the supraventricular tachyarrhythmia waveforms, such as 

atrial fibrillation, from the QRST complex in real time while avoiding the delays associated 

with the use of band-stop filter banks.   

 

Hue-Teh Shih, M.D., Director of the Center for Cardiac Arrhythmias, Houston, Texas 

expressed his expert opinion stating: “Signal Advance technology … can revolutionize the 

non-pharmacological treatment of cardiac arrhythmias and epilepsy” [60].  

 

Artifact Detection and Correction 

 

The use of SA technology in artifact detection and correction potentially applies to a 

wide range of electrophysiological signals including electrocardiography (ECG) and 
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electroencephalography (EEG).  For the purpose of this discussion, the focus will be on 

EEG signals but its application is analogous to other bioelectric signals such as magneto-

encephalography (MEG), electromyography (EMG) and tracking of eye movements 

(electro-oculography – EOG).   

 

Sources of non-brain EEG artifacts include eye blinks/movements (EOG), muscle 

activity (EMG), cardiac pulses (ECG), AC power (line noise), skin/perspiration, respiration, 

electrodes and more recently, artifacts induced by functional MRI [93-95]. The spectral 

content of some of these artifacts (e.g. EOG and line noise) are limited to narrow frequency 

bands that may not significantly overlap with the EEG signals of interest. In addition, some 

artifacts (e.g. ECG, EOG) have large amplitudes relative to the EEG or are spatially 

localized (e.g. EOG) [96,97]. These unique artifact characteristics facilitate artifact removal 

using band-pass filtering or weighted subtraction of the artifact from the EEG signals using 

various statistical regression techniques [96-102].  

 

Functional magnetic resonance imaging (fMRI) artifacts, including ballisto-cardiac 

and large gradient artifacts, have proven to be more challenging given the unique 

environment of high magnetic field MRI [103-107]. Myogenic artifacts (e.g. EMG) contain 

spectral content that overlaps with that of the EEG making EMG detection and removal 

more difficult [96-98].  

 

The strategies employed to separate these overlapping signals involve different 

types of multivariate analyses for wave or source separation (often referred to as blind 

source separation [108]) to automatically remove non-brain electromagnetic signals that are 

assumed to be linearly superimposed on the actual brain signals. The methods used to 

separate and classify relevant features from detected signals include such methods as 

principal components analysis [94,105-107], independent components analysis 

[93,97,99,101,109], maximum signal fraction [94], canonical correlation [94,102,111,112], 

time-frequency representations [99,109,113,114], factor analyses [115], neural networks 

[116,117], support vector machines [118,119], method of delays [94,120], and others.  A 

number of these analyses operate in the frequency domain on narrow spectral bands as “… 

some EEG artifacts … are more easily identifiable in the frequency domain” [97,110,121-

125]. Performance improvements have been demonstrated through the use of various 

combinations of these techniques [94,104,106]. 
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Beyond automated artifact correction, there is a need for online (real time) artifact 

correction for use in responsive applications such as neurofeedback/neurotherapy, brain-

computer/neural interfaces, seizure warning/suppression systems and electrocardiology 

applications. Thus, much of the current research focus is on reducing the computational 

load of these techniques in order to shorten the processing time [94,97,101,102,104,105, 

108-110,120,124,125].  

 

While discussion of these artifact correction techniques is well beyond the scope of 

the present study, the following observations are consistent with potential SA applications:  

 

1. Artifacts overlap or mask the true bioelectric signal requiring separation. 

2. A number of these analyses operate in the frequency domain over narrow 

spectral bands.  

3. Much of the current research focus is on reducing the computational load of 

these techniques in order to reduce processing time.  

 

For online real-time applications, temporally advanced signal detection could 

potentially offset signal processing delays. Further, SA technology using multiple spectrally 

tuned bands of single-stage SA circuits in parallel (see Figure 2.7), has the potential to 

temporally shift overlapping signal components (artifacts/noise) differentially to allow 

unmasking of bioelectric signal components of interest, which would, facilitate artifact 

detection/correction.    

 

Epileptic Seizure Detection/Suppression 

 

It is estimated that epilepsy affects roughly 1% of the U.S. population or over 3 

million individuals. Of those affected, 25% (about 750,000 people) do not respond well to 

drug therapy, thus suffering disabling side effects [126]. Alternatives to long-term 

pharmaceutical treatment strategies are therefore needed. 

 

Studies of the pathophysiology of seizures have provided a number of operational 

theories. A recent study using the WAG/Rij strain of rats, a validated animal model for 

absence seizures [127] in which the location of the seizure onset is well defined, provides 
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strong evidence that the seizure activity begins focally and takes approximately 500 ms to 

become generalized [128]. These findings support the speculation that rapid detection of 

initial seizure onset at this central focus could facilitate intervention. 

 

Epileptiform signals are distinguishable from normal EEG signals based on their 

wave-shapes.  Signals indicative of epileptiform activity include impulses called spikes (20 

to 70 ms) and sharp waves (70 to 200 ms) which are twice the amplitude of background 

activity, and slow waves (low frequency, amplitude > 100 µV, duration: > 200 ms). In 

addition, various high frequency oscillations have been associated with localized 

epileptogenic pathologies.  

 

A number of these characteristic indicators of epileptiform activity can be detected in 

the EEG prior to clinical manifestation. Much like the detection of artifacts, considerable 

progress has been made not only in the automated detection of such activity in the EEG but 

also the development of closed-loop “on-demand” seizure therapies with first-generation, 

“intelligent” seizure-treatment devices in clinical trials [129]. These therapies are highly 

dependent on the performance of automatic seizure detection algorithms to distinguish 

epileptiform activity in order to control the delivery of an appropriate therapy.  

 

These algorithms have been developed using combinations of methodologies based 

on spatiotemporal and spectral analyses, artificial neural networks, morphological filters to 

extract specific EEG waveform features (both linear and nonlinear), wavelet analyses, as 

well as chaos and fractal analyses [130-137].  Furthermore, a number of the methodologies 

demonstrated improved performance when more individualized or patient specific 

approaches were employed [138-141].  Several algorithms have yielded excellent results 

with regard to sensitivity and specificity but have detection rates ranging from 30 seconds to 

fewer than 2 seconds. While these detection delays are significant, a number of these 

methods are still considered predictive since seizure detection in the EEG typically 

precedes clinical manifestation. 

 

The performance features that are most critical to success in this area of research 

include high sensitivity, high specificity, and rapid or early detection [142-147].  Earlier 

seizure detection of (and response to) initiation of paroxysmal oscillations is believed to 
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enhance intervention efficacy providing a rationale for investigating the applicability of SA 

technology to improve detection performance. 

 

Neurofeedback 

 

In EEG biofeedback or neurofeedback, an individual’s brainwaves are detected and 

displayed in some manner to provide feedback regarding the brain activity. Typically, the 

time domain EEG signals are then divided into spectral bands either by applying a fast 

Fourier transform (FFT) or by using a bank of narrow band filters. The traditional frequency 

bands are termed delta (1 to 4 Hz), theta (4 to 8 Hz), alpha (8 to 13 Hz), beta (13 to 38 Hz) 

[148] and gamma (38 to 42 Hz). The reported upper beta boundary and gamma range 

boundaries vary among investigators [149-151]. 

 

Brain activity at various frequencies correlates with various states of awareness, 

arousal, attention, relaxation, etc. For example an individual who is drowsy may exhibit 

increased delta activity, and inattention/day-dreaming is associated with increased theta. 

Calm, relaxed wakefulness (with eyes closed) is typically associated with alpha whereas 

EEG activity in the 16-20 Hz range of beta is related to thinking/problem solving.  Excessive 

beta activity however, is associated with anxiety or stress [148,149].  

 

 It is speculated that gamma activity is associated with integrating neural signal 

activity from disparate brain regions (in the late 70’s and 80’s much research was done on 

40 Hz brain rhythms associated with a state of “focused arousal”).  Beyond the correlations 

between frequency and behavioral/clinical symptoms, there are also spatial correlations.  In 

other words, anomalous signals from specific brain regions are also associated with 

particular clinical behaviors or manifestations [152,154].  

 

In addition to oscillations in various frequency bands, there are other EEG 

components indicative of specific brain activities that are targeted by various neural training 

protocols.  These patterns include slow cortical potentials (SCPs) related to increasing 

attention/focus and mental preparation, and event related potentials (ERPs) indicative of 

developmental effects [149,151]. 

 



 

97 
 

Spectral EEG abnormalities are considered either hypo- or hyper-functional or both 

depending on the frequency and associated brain regions involved. For example, patients 

with attention deficit disorder (ADD) and attention deficit with hyperactivity (ADHD) tend to 

exhibit higher than normal levels of slow wave activity (theta) in the pre-frontal and frontal 

regions of the brain as well as reduced alpha/beta levels [149,151,153,155].  These 

individuals have difficulty with impulsive behavior, attention, emotions, concentration and 

memory [155,156]. Significant improvements in these areas have been achieved through 

the use of neurofeedback training to assist the subject in shifting brain wave activity to a 

more normal pattern (e.g., reducing the slow wave activity and increasing alpha/beta 

activity) [157-161].  

 

While the application of neurofeedback to ADD/ADHD has been the most 

extensively studied, a partial list of other clinical applications includes epilepsy [162-165], 

recovery from brain injury/stroke [166-169], alcoholism [170-172], drug abuse [173-176], 

post-traumatic stress, anxiety, sleep and obsessive compulsive disorder [187-189], 

depression [148,153,179,180], chronic fatigue syndrome, fibromyalgia [148], 

headaches/pain [181-184], autism [148,185,186], various tremors, cerebral palsy [148,187] 

dyslexia [188,189] and learning disabilities (mental retardation) [190]. In addition, 

neurofeedback has been reported to enhance memory and cognitive functioning [191-194] 

as well as improved creative/athletic performance [195-201].               

 

Most investigators describe neurofeedback training as a form of operant 

conditioning [149,151,152,162,166,202-205]. When desirable changes in brain activity are 

obtained, a positive reward is provided, whereas undesirable changes result in either a 

negative reward or the positive reward is withheld - usually under the guidance of a 

neurotherapist or trainer [206]. It is this feedback and associated rewards or reinforcements 

that provide the mechanism by which the individual learns to change his/her brain waves.   

 

Advances in electronics and signal processing technology continue to improve the 

performance of neurofeedback systems thus reducing the inherent delay in them between 

brain wave detection and feedback presentation. A number of studies investigating the 

effects of delayed feedback on operant conditioning have concluded that increased 

feedback delay has a negative effect on learning [207-211].  It is believed that “Unless the 

(feedback) signal, like other biological signals is almost instantaneous, there is a risk it will 
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not be effective. …delayed feedback is unlikely to be effective when trying to facilitate 

change.” [209]. 

 

Another author/investigator made the following statement “…delay in feedback 

complicates the learning process” [211]. In a personal communication, Harold L Russell, 

Ph.D., an experienced clinical neurotherapist and neuropsychologist/researcher offered his 

view that Signal Advance technology could significantly improve the precision of timing of 

neurofeedback stimulation thereby improving treatment efficacy, and may significantly 

decrease the total amount of treatment time required [212].  In short, reducing the delay 

between EEG signal acquisitions and feeding the processed signals back to the subject 

holds promise of significantly improving training speed and efficacy. 

 

Brain-Computer/Neural Interfaces 

 

There is great interest in the restoration and enhancement of human motor and 

sensory functions by interfacing prosthetic devices of various types with the nervous 

system. This broad research area includes both neuromuscular stimulation (e.g. functional 

electrical stimulation in which peripheral nerves or muscles are stimulated to approximate 

normal movement in paralyzed limbs) and neural signal detection (peripheral or central) 

[213].  Neuroprostheses are artificial replacements for missing body parts or functions that 

are interfaced to and controlled by the nervous system, or by signals from muscles through 

neural interfaces. These interfaces could also be used to control exoskeletal systems or 

tele-robots and may involve bi-directional communication using both detection and 

stimulation electrodes for closed-loop feedback control [213-215].  

 

The electrodes used in prosthetic interfaces to detect signals from the peripheral 

and central nervous system as well as the signals from muscles may be invasive or non-

invasive [213,216-218].  Non-invasive scalp electrodes are used to record EEGs whereas 

invasive electrodes could be placed directly upon the cortical surface for 

electrocorticography (ECoG) to acquire the local neuronal field potentials, or directly into 

the neurons to record single unit activity [214,217,219,220].  For peripheral interfaces, skin 

surface electrodes are used to stimulate or detect signals from peripheral nerves (ENG) or 
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muscles (EMG) in which both used to estimate various movement parameters such as 

force or torque [213,221].  

 

Invasive muscle electrodes include both epimysial and intramuscular types. Invasive 

peripheral nerve electrodes include a variety of extraneural or intraneural electrodes [213].  

Generally, the more invasive the sensor, the more specific is the measured signal content 

[213,214,216,217].  Generation of stimulation signals to activate paralyzed limbs is of 

similar complexity.  For the purpose of the present study, the balance of the discussion will 

focus on signal detection.  

 

Regardless of the type of sensor used or signal detected, the overall goal is to 

derive from the detected signals the subject’s intent with regard to a control output.  A 

number of processing steps are required to translate the detected biosignals into control 

signals [213,220,222-224]. The required signal processing is the same as described in 

previous sections discussing artifact correction, neurofeedback and seizure detection. The 

first step, signal pre-processing, includes signal amplification and anti-alias filtering. 

Subsequent processing steps include artifact correction, temporal/spectral/spatial filtering 

and improvement of the signal-to-noise ratio of the detected signal.  

 

A further step is feature extraction, the process of separating a signal with specific 

characteristics (or features) from all of the other informational subsets of data, followed by 

feature reduction/classification to determine which features represent or predict the 

subject’s actual intent [225-227].  Post-processing may then be applied to reduce prediction 

errors, followed by the translation of classified predictors into output signals that are used to 

control devices such as artificial limbs or computer cursors thus providing feedback 

completing the control loop [214,215,220,222].          

 

Much of the current research targets performance improvement of algorithms used 

for feature extraction/classification in terms of accuracy and computational efficiency 

[216,226-228]. A number of the methods employed with non-invasive electrodes report 

average latencies or response times in the range of 200-400 ms [218, 229-231].  Response 

improvements in the last ten years are reflected in the reduction in the average time 

required to move a computer cursor across the screen and press a button (BCI system 
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using scalp electrodes) from 16 s reported in the year 2000 [232] to 2.4 s in 2006 [233] 

compared to an average response time for normal control using a mouse of just over 1 s.  

 

 This example reflects only one-dimensional control (left-right), whereas multiple 

dimensions of control will be required to mimic natural limb movement [220]. The use of 

invasive electrodes to detect cortical motor activity increased the communication rate to 6.5 

bps (or approximately 150 ms) by 2006 [234]. A recent press release (RIKEN, June 29, 

2009) entitled “Real-time control of wheelchairs with brain waves” reports one of the fastest 

closed loop response times: “commands for smooth left and right turns and forward motion 

of the wheelchair are processed every 125 milliseconds.”  

 

The overall problem with response time of neuroprosthetics is captured in the 

following excerpt from an Associated Press article (July 2007), entitled “War Fuels 

Prosthetics Research Blitz”: 

 

The myoelectric Utah Arm, made by Motion Control Inc., of Salt Lake City, 

has circuitry that reads muscle twitches as electric signals to open and close 

a hook or hand attachment. But its response time, even at less than a 

second, is so slow that Salzman prefers an old-fashioned, "body-powered" 

prosthesis, controlled by a cable and rubber bands. … I don't like having to 

wait if I want to grab something.  (Saltzman stated in discussing his 

neuroprosthetic arm). 

 

Furthermore, learning to use any prosthetic system requires the same operant 

conditioning process used in neurofeedback.  Response delays (i.e. delayed feedback) 

have a negative impact upon learning to use these devices, especially when there is a 

significant difference between normal biological response time and that of the prosthetic 

device.     

 

While processing speed of electronic devices will continue to improve, increasingly 

sophisticated prostheses will demand increased computational efficiency. Until prosthetic 

response times are equivalent to biological response times, widespread acceptance and 

use of neuroprostheses will be hindered. On the other hand, offsetting these delays will 

increase and facilitate the adoption and widespread use of prosthetics by permitting faster 
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processing of neural signals of increasing dimensions to control ever more complex 

prostheses. Performance increases in the speed of signal detection, analysis and 

transmission could be incremental in the development of more sophisticated neuro-

prosthetic devices potentially enabling higher dimensional levels of control.  

 

The performance improvement over the last decade in the acquisition, detection and 

processing of these signals for use in neuroprosthetics has been over five-fold.  By 

projecting another five-fold performance increase over the next decade, one might 

speculate that a significant number of practical applications of signal advance technology 

could emerge during this period.   

 

Medical Imaging 

 

In medical imaging, such as CT or MRI, motion is one of the most common causes 

of image artifact, degrading the quality of the acquired images. The prevention of motion 

artifact results in improved image quality and increased diagnostic utility.  These artifacts 

result from voluntary motion such as overall body movement, and involuntary motion 

including the beating heart and breathing, as well as vascular pulsation from blood and 

cerebral spinal fluid flow.   

 

In MRI and CT, the images are created by combining a number of repeated image 

sequences. Respiratory and cardiac cycles are periodic, thus the changes in anatomical 

positions of organs are cyclical. For example, the heart expands and contracts during each 

cardiac cycle. For a number of imaging procedures, in order to avoid motion artifacts due to 

heart movement, each image sequence must be captured at the same point in the cardiac 

cycle [235], preferably during a quiescent period when there is minimal movement. An 

example of such a quiescent period is diastole, when the heart is passively filling with blood 

[236,237].  The situation is analogous to the respiratory cycle in which organs move during 

each breath [236,238], when one would like to acquire data during a quiescent period at the 

end of expiration [239,240].     

 

In order to synchronize successive scans, a trigger is used to initiate the scan at the 

correct time – referred to as gated imaging. For cardiac imaging the trigger signal is 
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typically based on the QRS portion of the cardiac rhythm given its easily distinguishable 

peak [241,242].  However, the ECG signal is often distorted due to artifacts from the 

imaging equipment. In the MRI environment, sources of artifact include radio-frequency 

interference, magnetohydrodynamic and/or gradient effects [235,241,243].  Artifact removal 

may require preprocessing steps, such as digital low-pass filtering (with a frequency cut-off 

of 25 Hz), or more sophisticated artifact correction/removal (as described previously) to be 

applied to the ECG, further delaying its use [241,243]. 

   

In addition, typical jitter in the ECG trigger is about 10-15 ms [243].  These delays 

could adversely affect image quality, especially in the case of rapid heartbeats when the 

quiescent period is shortened.  In the case of irregular heartbeats or breathing, these trigger 

signals also indicate early movement and thus could prompt termination of the scan 

sequence to minimize unnecessary patient exposure and unusable image sequences given 

the greater probability of motion artifact [236].        

 

Temporally advanced detection of these trigger signals could potentially improve 

image quality by reducing the time required for image acquisition, thus improving temporal 

resolution.  Furthermore, earlier detection of movements may allow sufficient time to 

interrupt imaging sequences likely to contain motion artifact due to irregular cardiac or 

respiratory rhythms.  

 

Radiation Therapy  

 

 The goal of radiation therapy is the delivery of radiation doses to a specific target 

(e.g., tumor) while avoiding the irradiation of normal tissue. This is accomplished by 

targeting the treatment areas from several different angles to minimize normal tissue 

exposure and concentrating the radiation delivery at the intersection of the various delivery 

trajectories. Achieving this goal is particularly challenging when the target is mobile, its 

position constantly changing due to cardiac and respiratory movement. Respiration can 

change the location of thoracic and abdominal tumors as much as 3 cm during treatment 

[244]. This movement clearly results in reduced treatment efficacy and increased irradiation 

of normal tissue [245].  
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 Gated radiotherapy operates in a manner analogous to gated imaging, using 

external triggers to limit irradiation to periods when the tumor is in a specific target position, 

thereby reducing exposure of normal tissue [246,247]. The triggers are obtained by tracking 

the position of markers. These markers are either internal (implanted radio-opaque gold 

markers at or very near to the tumor) [244,246,248], or external (markers placed on the skin 

surface where their movements approximate the tumor movements) and may be used in 

combination [245]. Gated radiotherapy may, in addition, use respiratory gating to restrict 

treatment to the period of the respiratory cycle corresponding to the proper target position 

[240, 245,249-251]. 

 

 By gating radiotherapy, smaller target volumes can be used and normal tissue 

toxicity can be reduced [240,245,248,251]. However, despite position tracking, there are 

response delays in these gating systems.  For example, The Varian linac-based gating 

system has a response delay of 170 ms [252]. The following excerpt [246] underscores this 

response delay issue: 

 

If the marker moves at a speed less than 9 mm/s, compensation for the delay 

between movement recognition and irradiation is not required; at higher speeds the 

discrepancy between the planned and actually irradiated spots exceeds 1 mm due 

to the time delay. This time delay is not specific to our system but rather a general 

problem in gated systems.  

 

 “The time delay between recognition of the marker position and the start or stop of 

megavoltage x-ray irradiation was 0.03 seconds. … precise and real-time target localization 

is crucial for gated treatment.” [245].  

 

 In this application, temporally advanced signal detection could potentially improve 

performance by providing earlier detection of changes in the position of the radiation target 

thereby increasing treatment effectiveness while possibly reducing the negative side effects 

associated with irradiation of normal tissue.  
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Applications Summary 

 

Some potential applications described include real-time artifact detection/correction, 

neural pacing/seizure suppression, neurofeedback/neurotherapy, brain-computer/neural 

interfaces and electrocardiology. Furthermore, SA technology could enhance the 

performance of physiologically gated diagnostic and therapeutic applications such as 

imaging and radiotherapy in which temporally advanced triggering could significantly 

improve performance in the near-term.  For each of these applications, reducing response 

time and/or temporally separating overlapping signals could yield significant improvements 

in overall system performance. This may allow for more effective treatment of certain 

pathologies potentially opening the door to a whole new class of medical devices that 

respond faster than any currently available.  

 

In general, SA technology could be applied to temporally advance 1) narrowband 

signals to offset delays associated with filtering, and/or 2) broadband signals (offsetting 

overall signal processing delays).  In addition, differential SA technology using multiple 

spectrally tuned bands of SA circuits might be used to temporally separate overlapping 

signal components facilitating masked signal component separation/detection in responsive 

systems.  

 

For any potential application, the signal characteristics of interest and the 

application requirements determine the SA circuit design-performance criteria. For 

example, in the case of ECG’s, in implantable cardioverter/defibrillators (ICDs), the 

frequency range of interest is between approximately 10 and 40 Hz (the wave shape is also 

important regarding the feature extraction characteristics). Thus the SA circuit would be 

designed to provide a constant advance and gain beyond 40 Hz. Contrast this (ICD) 

application with ECG-gated imaging or radiation therapy in which the only requirement is 

the detection of the QRS peak.  As such, the wave shape is not nearly as important. Some 

amount of signal distortion may be acceptable in order to increase the peak detection 

advance.  

 

Respiration rates are typically under 60 breaths per minute (frequency rate: 1 Hz). 

Lung or other organ movement as a result of respiration would present a similar movement 
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cycle as that of the respiratory cycle. To temporally advance respiratory related signals, SA 

circuitry would need to be developed to advance the detection by over 500 ms. In 

respiratory-gated radiation therapy, SA circuitry designed for such lower cycle rates could 

provide a much earlier trigger to terminate irradiation due to irregular or unanticipated 

movement, helping to minimize damage to normal tissue.         

 

Some electrocorticographic (ECoG) recording studies (from electrodes placed on 

the cortex) indicate activity of interest at around 40 Hz, whereas others target activity in the 

70-150 Hz range. Thus for any ECoG application, an SA circuit would be designed 

accordingly, with higher frequency requirements imposing greater single stage and overall 

cascaded detection advance limitations as discussed previously (Chapter II, Circuit 

Cascading).     

 

In neuroprosthetics, electroneurograms (ENGs) are often sampled up to 10 kHz. 

However, the force transients required for functional neuromuscular stimulation vary 

between 0 and 50 Hz. Thus SA circuitry designed to advance the detection of these force 

transients could be designed for the lower spectral range.  

 

In neurofeedback, a number of systems operate on signals with spectral content 

from the delta to the beta range (0.5 to 30Hz), others through the gamma range and higher 

(typically up to about 100 Hz). For an application limited to the beta range, an SA circuit 

design similar to that described in this study might suffice. 

 

In essence, the SA circuitry must be designed for the specific application and there 

will be trade-offs between the detection advance that may be achieved, the minimum 

spectral range required, and the amount of signal distortion that can be tolerated.   For SA 

technology to be of practical use in electrophysiological applications, the overall temporal 

advance achieved must provide a significant offset to signal processing delay or provide a 

usable temporal shift for separating masked or overlapping signal components based on 

spectral content.  For near-term applications, the temporally advanced output signal should 

be a high fidelity representation of the input signal in order to take advantage of detection, 

feature extraction and other signal processing methodologies. 
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Significant Improvements in SA technology performance could be accomplished by 

1) cascading multiple SA circuit stages to increase the overall temporal advance achieved, 

2) applying pre- and post-conditioning to reduce/eliminate signal distortion and 3) arranging 

parallel arrays of narrowband SA circuit cascades to meet specific spectrotemporal 

requirements.  

 

Investigation Limitations 

 

This study demonstrated the performance of a circuit model rather than an actual 

physical circuit.  While circuit modeling is common practice in electronics development, 

ultimately the physical circuit must be built and tested. The SA circuit model is prone to 

oscillations given the resonant nature of the poles and thus is sensitive to noise in their 

spectral vicinity. Based on the experience obtained in constructing earlier circuits, actual SA 

circuit construction requires experience and attention to strategic circuit board layout, noise 

suppression and shielding.  While the SA circuit model performed as anticipated, further 

refinement and testing is likely required. These revisions could include changes in the 

design frequency range, cascading of multiple SA circuit stages, addition of pre- and post 

signal conditioning stages, and expansion from a two-pole design to three or more poles to 

improve circuit response characteristics. 

 

The present study focused on requirements specific to ECG signals. Other types of 

electrophysiological signals will certainly present different performance requirements.  In 

terms of the study itself, additional testing should be performed to address study limitations. 

For example, the tri-frequency testing could be expanded to include frequencies beyond the 

circuit model pole frequencies. The ECG signals used were not initially low-pass filtered 

and thus they contained noise not normally found in clinical recordings.  The additional 

study of low-pass and 60 Hz notch filtered ECG signals, representative of those obtained 

clinically, should be carried out.  The effect of varying noise content could also be 

investigated.   

 

The focus of this study was the effect of signal advance on individual ECG 

heartbeats. However, most practical clinical applications will require studies using 
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continuous ECG signals. Temporally advanced continuous ECG recordings could be 

reviewed by electrocardiologists experienced in the interpretation of ECGs to test whether 

or not temporal advancement of the ECG adversely affects clinical interpretation.  For other 

types of electrophysiological signals, there is an analogous list of research possibilities.  

 

Future Research  

 

The goal of the present study is to demonstrate the ability of the SA circuit model to 

temporally advance the detection of the ECG. The following list of potential experiments (in 

no particular order) could build on and expand the results obtained in this study. 

 

1. Extend the spectral range of constructed test signals - in particular, sine burst and 

tri-frequency signals from 25 Hz to 150 Hz to include both poles of the SA circuit 

model.  In this way, the circuit response characteristics may be more explicitly 

determined across a range that includes the circuit pole frequencies. 

 

2. Test ECG signals, typical of those obtained clinically, which have first been low-

pass filtered at a frequency threshold below the first pole location, and notch (60 

Hz) filtered to minimize the effect of the mains frequency. Test both single heartbeat 

segments as well as continuous ECG recordings. 

 

3. Test the impact of varying levels of random noise on SA circuit model performance. 

In addition, vary the spectral content of the noise to characterize the relationship 

between the noise effects relative to frequency.    

 

4. Develop a series of SA circuit models designed for frequency ranges above 25 Hz 

(e.g. 30, 40, 50 Hz, etc.) to compare/contrast changes in SA circuit response. 

 

5. Develop an SA circuit model using more than two poles to potentially improve the 

duration and constancy of the signal detection temporal advance obtained. 
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6. Investigate the effect of shifting SA circuit model poles to change the frequencies at 

which the circuit resonates while maintaining a constant temporal advance with 

minimal additional distortion.  

  

7. Use the temporally advanced detection of a specific component of an analog 

waveform to produce a trigger pulse or signal within the duration of the advance 

obtained, demonstrating the ability to generate an interventional signal based on the 

advanced detection of a specific component of an analog waveform.  

 

8. Study the effects of SA detection on the clinical interpretation of ECG recordings. 

Temporally advance ECG recordings taken from multiple patient populations (e.g. 

normal, tachycardia and arrhythmia). The original and advanced waveforms would 

be randomly ordered. Experienced electrocardiographers would review all the 

waveforms (both original and temporally advanced) and categorize them as normal 

or as indicative of tachycardia or arrhythmia. Kappa, a measure of interclass 

correlation, would be used to determine the agreement between the original and 

temporally advanced ECG recording categorizations for each interpreter.  

 

9. Develop and test a cascaded SA circuit model and investigate effects of cascading 

in terms of increased temporal advance, changes in gain and output distortion. The 

cascaded SA circuit model should be tested with both constructed test signals, and 

electrophysiological recordings. 

 

10. Develop and test a parallel SA circuit array designed to temporally advance the 

detection of particular narrow spectral ranges. This could potentially be used in 

conjunction with a parallel filter bank to reduce delays in a responsive system.  

Configure different parallel paths to impart varying delays/advances over certain 

spectral ranges to demonstrate temporal separation of waveform components 

based on their spectral content.    
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11. Develop pre- (analog) and post- (analog or digital) filtering/signal conditioning circuit 

models using high-speed electronics with response times significantly less than the 

temporal advance obtained, to minimize or eliminate altogether high frequency 

output distortions. Test the filter stage response to confirm that the added delays 

are significantly less than the temporal advance achieved in order to be of utility 

(possibly even an order of magnitude or two less). 

 

12. Build the actual physical circuitry to test its performance. Due to the oscillatory 

nature of the circuit, in particular to spectral content approaching the poles, this will 

likely require shielding and particular attention to the layout and placement of circuit 

traces to avoid artifacts.  

 

13. Adapt the SA circuit model for use in other electrophysiological applications having 

different waveform/spectral characteristics, such as those related to the EEG for 

epileptic seizure detection, neurotherapeutic and/or neuroprosthetic applications. 
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SPICE command sequences, net lists, libraries, etc.    
 

 
AC Analysis: 
 

*** N:\Res\SPICE\AC Analysis\AC-AnalysisModels.lib *** 

 

*** Spice Control Statements Start *** 

 

.OPTIONS TEMP=27  

.OPTIONS ITL1=5K  

.OPTIONS ITL2=5K  

.OPTIONS ITL4=500  

.OPTIONS GMIN=10p  

.OPTIONS GMINSTEPS=2K  

.OPTIONS SRCSTEPS=5K  

.OPTIONS floatdata=1  

.AC DEC 200 100m 200 

 

*** Spice Control Statements End *** 

 

.SUBCKT TL082/301/TI_XN _ssi_pin0 _ssi_pin1 _ssi_pin2 _ssi_pin3 _ssi_pin4  

* _SS_Symbol [C:\Program 

Files\AnaSoft\SuperSpice\System\AmpsAndBuffers.ssm] [OpAmp5Pin] 

V_ssi_pin4 _ssi_pin4  5 0 

V_ssi_pin3 _ssi_pin3  4 0 

V_ssi_pin2 _ssi_pin2  3 0 

V_ssi_pin1 _ssi_pin1  2 0 

V_ssi_pin0 _ssi_pin0  1 0 

* 

* 

C1   11 12 3.498E-12 

C2    6  7 15.00E-12 

DC    5 53 DX 

DE   54  5 DX 

DLP  90 91 DX 

DLN  92 90 DX 

DP    4  3 DX 

EGND 99  0 POLY(2) (3,0) (4,0) 0 .5 .5 

FB    7 99 POLY(5) VB VC VE VLP VLN 0 4.715E6 -5E6 5E6 5E6 -5E6 

GA    6  0 11 12 282.8E-6 

GCM   0  6 10 99 8.942E-9 

ISS   3 10 DC 195.0E-6 

HLIM 90  0 VLIM 1K 

J1   11  2 10 JX 

J2   12  1 10 JX 

R2    6  9 100.0E3 

RD1   4 11 3.536E3 

RD2   4 12 3.536E3 

RO1   8  5 150 

RO2   7 99 150 

RP    3  4 2.143E3 

RSS  10 99 1.026E6 

VB    9  0 DC 0 

VC    3 53 DC 2.200 

VE   54  4 DC 2.200 
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VLIM  7  8 DC 0 

VLP  91  0 DC 25 

VLN   0 92 DC 25 

.MODEL DX D(IS=800.0E-18) 

.MODEL JX PJF(IS=15.00E-12 BETA=270.1E-6 VTO=-1) 

.ENDS 

 

 

*** N:\Res\SPICE\AC Analysis\AC-Analysis.sss *** 

 

 

*** Component Net List Start *** 

 

V37 Node1 0 DC 0 AC 1 PWL 

V28 Node24 0 DC 10 

V27 0 Node25 DC 10 

X12 Node5 Node9 Node24 Node25 Node22 TL082/301/TI_XN 

V26 0 Node18 DC 10 

V25 Node15 0 DC 10 

X11 Node8 Node9 Node15 Node18 Node13 TL082/301/TI_XN 

R28 Node12 Node40 500  

R27 Node40 Node6 5K  

V24 Node42 0 DC 10 

V23 0 Node43 DC 10 

X10 Node10 Node12 Node42 Node43 Node40 TL082/301/TI_XN 

V22 0 Node35 DC 10 

V21 Node32 0 DC 10 

X9 Node6 Node12 Node32 Node35 Node11 TL082/301/TI_XN 

R25 Node5 Node13 5K  

R24 Node13 Node9 500  

R23 Node11 Node12 5K  

C8 Node11 Node10 1u IC=0  

R22 Node10 Node11 1Meg  

R21 Node9 Node22 5K  

C7 Node8 Node22 1u IC=0  

R20 Node22 Node8 1Meg  

R19 Node10 Node8 536  

V20 Node77 0 DC 10 

V19 0 Node78 DC 10 

X8 Node84 Node62 Node77 Node78 Node4 TL082/301/TI_XN 

V18 0 Node71 DC 10 

V17 Node68 0 DC 10 

X7 Node7 Node62 Node68 Node71 Node66 TL082/301/TI_XN 

R18 Node65 Node93 1K  

R17 Node93 Node89 5K  

V16 Node95 0 DC 10 

V15 0 Node96 DC 10 

X6 Node63 Node65 Node95 Node96 Node93 TL082/301/TI_XN 

V14 0 Node88 DC 10 

V13 Node85 0 DC 10 

X5 Node89 Node65 Node85 Node88 Node64 TL082/301/TI_XN 

R15 Node84 Node66 5K  

R14 Node66 Node62 1K  

R13 Node64 Node65 5K  

C6 Node64 Node63 10u IC=0  

R12 Node63 Node64 1Meg  

R11 Node62 Node4 5K  
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C5 Node7 Node4 10u IC=0  

R10 Node4 Node7 1Meg  

R9 Node63 Node7 422  

V5 Node129 0 DC 10 

V4 Node122 0 DC 10 

V3 0 Node121 DC 10 

V2 0 Node126 DC 10 

X2 Node134 Node5 Node122 Node121 Node132 TL082/301/TI_XN 

X1 Node1 Node84 Node129 Node126 Node134 TL082/301/TI_XN 

R1 Node89 Node134 2.77K  

R2 0 Node84 23.8K  

R3 Node6 Node132 2.77K  

R4 0 Node5 23.8K  

C15 Node132 Node5 75n IC=0  

C17 Node134 Node84 62.8n IC=0  

R30 0 Node151 27K  

R29 Node132 Node151 77K  

 

*** Component Net List End *** 

 

 

*** Spice Library Statements Start *** 

 

 

*** Spice Library Statements End *** 

 

 

*** Spice Include Statements Start *** 

 

.INCLUDE N:\Res\SPICE\AC\AC-Analysis.lib 

.INCLUDE N:\Res\SPICE\AC\AC-Analysis.lib 

 

*** Spice Include Statements End *** 

 

.SAVE @VP(Node151) @VM(Node151)  

 

.END 

 

.control 

set filetype=ascii 

.endc 
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Transient Analysis: 
 
 

*** N:\Res\SPICE\Trans\TransientModels.lib *** 

 

*** Spice Control Statements Start *** 

 

.OPTIONS TEMP=27  

.OPTIONS ITL1=5K  

.OPTIONS ITL2=5K  

.OPTIONS ITL4=500  

.OPTIONS GMIN=10p  

.OPTIONS GMINSTEPS=2K  

.OPTIONS SRCSTEPS=5K  

.OPTIONS floatdata=1  

.OP 

.TRAN 500u 8 0 500u  

.FOUR 1Meg V(Node151) 

 

*** Spice Control Statements End *** 

 

.SUBCKT TL082/301/TI_XN _ssi_pin0 _ssi_pin1 _ssi_pin2 _ssi_pin3 _ssi_pin4  

* _SS_Symbol [C:\Program 

Files\AnaSoft\SuperSpice\System\AmpsAndBuffers.ssm] [OpAmp5Pin] 

V_ssi_pin4 _ssi_pin4  5 0 

V_ssi_pin3 _ssi_pin3  4 0 

V_ssi_pin2 _ssi_pin2  3 0 

V_ssi_pin1 _ssi_pin1  2 0 

V_ssi_pin0 _ssi_pin0  1 0 

* 

* 

C1   11 12 3.498E-12 

C2    6  7 15.00E-12 

DC    5 53 DX 

DE   54  5 DX 

DLP  90 91 DX 

DLN  92 90 DX 

DP    4  3 DX 

EGND 99  0 POLY(2) (3,0) (4,0) 0 .5 .5 

FB    7 99 POLY(5) VB VC VE VLP VLN 0 4.715E6 -5E6 5E6 5E6 -5E6 

GA    6  0 11 12 282.8E-6 

GCM   0  6 10 99 8.942E-9 

ISS   3 10 DC 195.0E-6 

HLIM 90  0 VLIM 1K 

J1   11  2 10 JX 

J2   12  1 10 JX 

R2    6  9 100.0E3 

RD1   4 11 3.536E3 

RD2   4 12 3.536E3 

RO1   8  5 150 

RO2   7 99 150 

RP    3  4 2.143E3 

RSS  10 99 1.026E6 

VB    9  0 DC 0 

VC    3 53 DC 2.200 

VE   54  4 DC 2.200 
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VLIM  7  8 DC 0 

VLP  91  0 DC 25 

VLN   0 92 DC 25 

.MODEL DX D(IS=800.0E-18) 

.MODEL JX PJF(IS=15.00E-12 BETA=270.1E-6 VTO=-1) 

.ENDS 

 

 

 

*** N:\Res\SPICE\Trans\Transient.sss *** 

 

 

*** Component Net List Start *** 

 

V37 Node1 0 DC 0 AC 1 PWL 

V28 Node24 0 DC 10 

V27 0 Node25 DC 10 

X12 Node5 Node9 Node24 Node25 Node22 TL082/301/TI_XN 

V26 0 Node18 DC 10 

V25 Node15 0 DC 10 

X11 Node8 Node9 Node15 Node18 Node13 TL082/301/TI_XN 

R28 Node12 Node40 500  

R27 Node40 Node6 5K  

V24 Node42 0 DC 10 

V23 0 Node43 DC 10 

X10 Node10 Node12 Node42 Node43 Node40 TL082/301/TI_XN 

V22 0 Node35 DC 10 

V21 Node32 0 DC 10 

X9 Node6 Node12 Node32 Node35 Node11 TL082/301/TI_XN 

R25 Node5 Node13 5K  

R24 Node13 Node9 500  

R23 Node11 Node12 5K  

C8 Node11 Node10 1u IC=0  

R22 Node10 Node11 1Meg  

R21 Node9 Node22 5K  

C7 Node8 Node22 1u IC=0  

R20 Node22 Node8 1Meg  

R19 Node10 Node8 536  

V20 Node77 0 DC 10 

V19 0 Node78 DC 10 

X8 Node84 Node62 Node77 Node78 Node4 TL082/301/TI_XN 

V18 0 Node71 DC 10 

V17 Node68 0 DC 10 

X7 Node7 Node62 Node68 Node71 Node66 TL082/301/TI_XN 

R18 Node65 Node93 1K  

R17 Node93 Node89 5K  

V16 Node95 0 DC 10 

V15 0 Node96 DC 10 

X6 Node63 Node65 Node95 Node96 Node93 TL082/301/TI_XN 

V14 0 Node88 DC 10 

V13 Node85 0 DC 10 

X5 Node89 Node65 Node85 Node88 Node64 TL082/301/TI_XN 

R15 Node84 Node66 5K  

R14 Node66 Node62 1K  

R13 Node64 Node65 5K  

C6 Node64 Node63 10u IC=0  

R12 Node63 Node64 1Meg  
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R11 Node62 Node4 5K  

C5 Node7 Node4 10u IC=0  

R10 Node4 Node7 1Meg  

R9 Node63 Node7 422  

V5 Node129 0 DC 10 

V4 Node122 0 DC 10 

V3 0 Node121 DC 10 

V2 0 Node126 DC 10 

X2 Node134 Node5 Node122 Node121 Node132 TL082/301/TI_XN 

X1 Node1 Node84 Node129 Node126 Node134 TL082/301/TI_XN 

R1 Node89 Node134 2.77K  

R2 0 Node84 23.8K  

R3 Node6 Node132 2.77K  

R4 0 Node5 23.8K  

C15 Node132 Node5 75n IC=0  

C17 Node134 Node84 62.8n IC=0  

R30 0 Node151 27K  

R29 Node132 Node151 77K  

 

*** Component Net List End *** 

 

 

*** Spice Libary Statements Start *** 

 

 

*** Spice Libary Statements End *** 

 

 

*** Spice Include  Statements Start *** 

 

.INCLUDE N:\Res\SPICE\Trans\Transient.lib 

.INCLUDE N:\Res\SPICE\Trans\TransientModels.lib 

 

*** Spice Include  Statements End *** 

 

.SAVE @VM(Node1) @VM(Node151)  

 

.END 

 

.control 

set filetype=ascii 

.endc 

 

 
*** N:\Res\SPICE\Trans\Transient.sss *** 
 

V37 Node1 0 DC 0 AC 1 PWL 0.00000 0.00000 

+0.0000E+00 5.1413E-06 

+1.0000E-03 5.6609E-06 

+2.0000E-03 6.1901E-06 

+3.0000E-03 6.7279E-06 

+4.0000E-03 7.2734E-06 

+5.0000E-03 7.8255E-06 

. . .  
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Table A.1: Gaussian pulse initial test results. 
 

Half Amplitude 
Equivalent 

Frequency (Hz) 

Pulse Width 
(sec) 

Peak Advance 
(ms) 

Peak Gain 

 

1 0.500 0.004940 0.970583 

2 0.250 0.004975 0.971221 

3 0.167 0.005005 0.972263 

4 0.125 0.004875 0.974110 

5 0.100 0.004680 0.976177 

6 0.083 0.004990 0.978217 

7 0.071 0.004970 0.981271 

8 0.063 0.004775 0.985320 

9 0.056 0.004995 0.990116 

10 0.050 0.004790 0.994224 

11 0.045 0.004965 0.999585 

12 0.042 0.004855 1.006358 

13 0.038 0.004770 1.011762 

14 0.036 0.004770 1.017688 

15 0.033 0.004865 1.025180 

16 0.031 0.004850 1.033448 

17 0.029 0.004800 1.041546 

18 0.028 0.004765 1.049337 

19 0.026 0.004760 1.057243 

20 0.025 0.004775 1.065718 

21 0.024 0.004795 1.074991 

22 0.023 0.004815 1.085097 

23 0.022 0.004825 1.095991 

24 0.021 0.004760 1.107618 

25 0.020 0.004820 1.119921 

 

Mean  0.004847 1.02 

Std Dev  0.0000924 0.0471 

Cv  1.91% 4.60% 
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Table A.2: Sine burst initial test results. 
 

Input (Hz) 
Peak Advance 

(ms) 
Zero-Crossing 
Advance (ms) 

Peak Gain 

 

1 0.003500 0.004833 0.90573019 

2 0.005000 0.004818 0.90685312 

3 0.005000 0.004875 0.90868589 

4 0.004500 0.004778 0.91126965 

5 0.005000 0.004864 0.91461614 

6 0.005000 0.004769 0.91949268 

7 0.005000 0.005250 0.92360561 

8 0.005000 0.004955 0.93255589 

9 0.005000 0.004731 0.93593073 

10 0.005000 0.004955 0.95037615 

11 0.005000 0.004917 0.95012127 

12 0.005000 0.004885 0.96094755 

13 0.005000 0.004867 0.96068351 

14 0.005000 0.004962 0.98226495 

15 0.005000 0.004705 0.99436925 

16 0.005000 0.004731 1.00776168 

17 0.005000 0.005071 1.01553379 

18 0.005000 0.004857 1.03967239 

19 0.004500 0.004885 1.05527022 

20 0.005000 0.004833 1.06191037 

21 0.005000 0.004937 1.09271784 

22 0.004500 0.004857 1.11502913 

23 0.005000 0.005101 1.11942156 

24 0.005000 0.004833 1.16181795 

25 0.005000 0.004778 1.18681622 

 

Mean 0.004880 0.004882 0.996538 

Std Dev 0.000332 0.000123 0.085645 

Cv 6.80% 2.53% 8.59% 
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Appendix B 

 
Table B.1: Triple frequency randomization table. 

 

Range Freq (Hz)   Selected Frequencies 

 

Low: 1  Input Signal Low Mid High 

 2      

 3  1 7 11 25 

 4  2 4 13 17 

 5  3 2 10 20 

 6  4 1 10 18 

 7  5 6 9 20 

 8  6 1 15 17 

   7 5 11 17 

Mid: 9  8 3 11 22 

 10  9 7 14 21 

 11  10 3 14 22 

 12  11 5 15 17 

 13  12 3 12 21 

 14  13 3 16 25 

 15  14 8 15 21 

 16  15 2 13 19 

   16 1 12 21 

High: 17  17 5 11 20 

 18  18 2 14 22 

 19  19 6 11 25 

 20  20 5 14 20 

 21  21 7 9 22 

 22  22 3 16 20 

 23  23 4 15 22 

 24  24 4 13 23 

 25  25 2 15 23 
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Table B.2:  Attenuation factor randomization table. 

 

 Signal Attenuation Factor 

Random    

Number Low Mid High 

    

5 0.20 0.30 0.45 

4 0.30 0.20 0.45 

6 0.20 0.45 0.30 

6 0.20 0.45 0.30 

1 0.45 0.30 0.20 

5 0.20 0.30 0.45 

2 0.45 0.20 0.30 

2 0.45 0.20 0.30 

1 0.45 0.30 0.20 

1 0.45 0.30 0.20 

3 0.30 0.45 0.20 

1 0.45 0.30 0.20 

3 0.30 0.45 0.20 

4 0.30 0.20 0.45 

3 0.30 0.45 0.20 

5 0.20 0.30 0.45 

3 0.30 0.45 0.20 

3 0.30 0.45 0.20 

3 0.30 0.45 0.20 

6 0.20 0.45 0.30 

2 0.45 0.20 0.30 

2 0.45 0.20 0.30 

3 0.30 0.45 0.20 

2 0.45 0.20 0.30 

6 0.20 0.45 0.30 
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Table B.3:  Gaussian pulse results summary. 

 

Half Ampl. 
Equiv. Freq. 

Pulse 
Width (s) 

Advance 
(ms) 

            Correlations 
      Time                Freq. 

Gain 
 

      

1 0.500 4.935 0.999999 0.999999 0.9705 

2 0.250 4.940 0.999999 0.999999 0.9708 

3 0.167 4.940 0.999998 0.999999 0.9714 

4 0.125 4.940 0.999996 0.999999 0.9722 

5 0.100 4.940 0.999990 0.999999 0.9732 

6 0.083 4.940 0.999980 0.999992 0.9745 

7 0.071 4.940 0.999966 0.999979 0.9760 

8 0.063 4.940 0.999941 0.999984 0.9779 

9 0.056 4.940 0.999893 0.999953 0.9801 

10 0.050 4.940 0.999841 0.999938 0.9826 

11 0.045 4.940 0.999744 0.999831 0.9855 

12 0.042 4.940 0.999680 0.999755 0.9886 

13 0.038 4.945 0.999524 0.999646 0.9921 

14 0.036 4.935 0.999442 0.999993 0.9959 

15 0.033 4.941 0.999327 0.999893 1.0001 

16 0.031 4.925 0.999142 0.999824 1.0044 

17 0.029 4.930 0.998878 0.999779 1.0088 

18 0.028 4.815 0.998956 0.999588 1.0321 

19 0.026 4.780 0.998460 0.999985 1.0256 

20 0.025 4.835 0.997938 0.999782 1.0246 

21 0.024 4.870 0.997471 0.999191 1.0274 

22 0.023 4.880 0.997077 0.998636 1.0324 

23 0.022 4.875 0.996745 0.995323 1.0384 

24 0.021 4.870 0.996348 0.994582 1.0445 

25 0.020 4.860 0.995865 0.993435 1.0506 

      

Mean  4.909 0.998968 0.9991634 1.0000 

Std Dev  0.0471 0.001295 0.001824 0.0267 

Cv  0.96%   2.67% 
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Table B.4: Sine burst results summary. 

 

Input (Hz) 
Advance 

(ms) 
Correlations 

      Time                 Freq. 
Gain 

     

1 4.790 0.998798 1.000000 0.9057 

2 4.845 0.999771 1.000000 0.9068 

3 4.770 0.999999 0.999999 0.9086 

4 4.810 0.999987 0.999990 0.9112 

5 4.805 0.999996 0.999990 0.9145 

6 4.750 1.000000 0.999980 0.9186 

7 4.685 1.000000 0.999965 0.9235 

8 4.820 0.999998 0.999942 0.9291 

9 4.795 0.999998 0.999913 0.9356 

10 4.860 0.999992 0.999877 0.9430 

11 4.850 0.999989 0.999837 0.9513 

12 4.840 0.999984 0.999795 0.9605 

13 4.830 0.999978 0.999758 0.9707 

14 4.900 0.999955 0.999731 0.9817 

15 4.935 0.999913 0.999721 0.9939 

16 4.935 0.999884 0.999736 1.0071 

17 4.940 0.999838 0.999774 1.0215 

18 4.945 0.999780 0.999831 1.0372 

19 4.945 0.999722 0.999894 1.0540 

20 4.945 0.999653 0.999946 1.0721 

21 4.945 0.999570 0.999967 1.0914 

22 4.945 0.999467 0.999938 1.1130 

23 4.950 0.999350 0.999849 1.1354 

24 4.945 0.999212 0.999702 1.1595 

25 4.940 0.999056 0.999514 1.1844 

     

Mean 4.869 0.999756 0.999866 0.9972 

Std Dev 0.0077 0.000336 0.000125 0.0866 

Cv 1.59%   8.68% 
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Table B.5:  Tri-frequency results summary. 
 

 
Frequency  

Components 
Advance 

(sec) 
Correlations 

    Time            Freq. 
Gain 

        

1 7 11 25 4.940 0.993788 0.993788 1.1050 

2 4 13 17 4.945 0.998952 0.998952 1.0051 

3 2 10 20 4.940 0.997982 0.997982 0.9933 

4 1 10 18 4.940 0.998833 0.998833 0.9823 

5 6 9 20 4.940 0.998500 0.998499 0.9597 

6 1 15 17 4.945 0.999447 0.999447 1.0172 

7 5 11 17 4.940 0.998748 0.998747 0.9675 

8 3 11 22 4.945 0.995691 0.995690 0.9935 

9 7 14 21 4.940 0.998308 0.998308 0.9780 

10 3 14 22 4.945 0.997483 0.997478 0.9740 

11 5 15 17 4.940 0.999320 0.999320 0.9934 

12 3 12 21 4.940 0.997935 0.997935 0.9647 

13 3 16 25 4.940 0.997308 0.997308 1.0189 

14 8 15 21 4.945 0.997721 0.997720 1.0561 

15 2 13 19 4.940 0.999026 0.999026 0.9814 

16 1 12 21 4.945 0.997608 0.997608 1.0545 

17 5 11 20 4.940 0.998794 0.998794 0.9731 

18 2 14 22 4.940 0.998260 0.998259 0.9958 

19 6 11 25 4.940 0.996875 0.996872 0.9845 

20 5 14 20 4.945 0.998811 0.998811 1.0151 

21 7 9 22 4.940 0.996252 0.996250 0.9977 

22 3 16 20 4.945 0.997141 0.997141 0.9897 

23 4 15 22 4.940 0.998360 0.998359 1.0044 

24 4 13 23 4.945 0.995059 0.995056 1.0023 

25 2 15 23 4.945 0.997555 0.997554 1.0377 

        

Mean    4.942 0.997750 0.997750 1.0018 

Std Dev    0.002 0.001374 0.001374 0.03316 

Cv    0.05%   3.31% 
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Table B.6:  Gain as a function of frequency for the tri-frequency signals. 

 

Frequency Gain  

  

1 0.958 

2 0.959 

3 0.960 

4 0.961 

5 0.963 

6 0.965 

7 0.968 

8 0.971 

9 0.974 

10 0.978 

11 0.982 

12 0.987 

13 0.992 

14 0.998 

15 1.004 

16 1.010 

17 1.017 

18 1.025 

19 1.033 

20 1.042 

21 1.052 

22 1.062 

23 1.073 

24 1.085 

25 1.097 

  

Mean 1.005 

Std Dev 0.04322 

Cv 4.30% 
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Table B.7: Distortion ratio (%) for the tri-frequency signals. 

 

 Distortion Ratio 

 
Time 

Domain 
Frequency 

Domain 

   

1 0.1574 0.1573 

2 0.0464 0.0462 

3 0.0638 0.0637 

4 0.0512 0.0510 

5 0.0672 0.0671 

6 0.0379 0.0377 

7 0.0591 0.0590 

8 0.0928 0.0928 

9 0.0617 0.0616 

10 0.0748 0.0748 

11 0.0375 0.0373 

12 0.0724 0.0723 

13 0.0766 0.0764 

14 0.0894 0.0893 

15 0.0476 0.0475 

16 0.0897 0.0895 

17 0.0555 0.0554 

18 0.0591 0.0590 

19 0.0800 0.0800 

20 0.0516 0.0514 

21 0.0866 0.0865 

22 0.0760 0.0759 

23 0.0577 0.0576 

24 0.0996 0.0996 

25 0.0807 0.0806 

   

Mean 0.0709 0.0708 

Std Dev 0.02495 0.02497 
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Appendix C:  

 
Table C.1: ECG individual subject temporal advance/gain results (subject RJ). 

 

 
Advance 

(sec) 
 Correlations 

Time (max)     Frequency  Gain 

       

1 4.940E-03  0.997010 0.997036  1.016757 

2 4.940E-03  0.996816 0.996851  1.016618 

3 4.940E-03  0.996843 0.996901  1.018724 

4 4.940E-03  0.996863 0.996850  1.018238 

5 4.940E-03  0.996797 0.996863  1.018410 

6 4.940E-03  0.996847 0.996914  1.018950 

7 4.940E-03  0.996948 0.996991  1.016277 

8 4.940E-03  0.996551 0.996638  1.019390 

9 4.940E-03  0.996697 0.996801  1.018474 

10 4.940E-03  0.996957 0.996977  1.018226 

11 4.940E-03  0.996785 0.996789  1.019213 

12 4.940E-03  0.996777 0.996830  1.017414 

13 4.940E-03  0.996952 0.996999  1.015790 

14 4.940E-03  0.996690 0.996764  1.018094 

15 4.940E-03  0.996772 0.996742  1.018991 

16 4.940E-03  0.996577 0.996629  1.020117 

17 4.940E-03  0.996581 0.996652  1.022305 

18 4.940E-03  0.996578 0.996665  1.016995 

19 4.940E-03  0.997099 0.997142  1.013752 

20 4.940E-03  0.996984 0.996878  1.016576 

       

Mean 4.940E-03  0.996806 0.996846  1.02E+00 

Std Dev 1.053E-18  0.000159 0.000141  1.81E-03 

Cv 2.131E-16     0.18% 
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Table C.2: ECG individual subject temporal advance/gain results (subject EG). 

 

 
Advance 

(sec) 
 Correlations 

Time (max)     Frequency  Gain 

       

1 4.940E-03  0.996759 0.996000  1.009070 

2 4.940E-03  0.996262 0.994892  1.008871 

3 4.935E-03  0.995773 0.994823  1.007881 

4 4.735E-03  0.990778 0.988099  1.045035 

5 4.935E-03  0.995433 0.993126  1.014452 

6 4.935E-03  0.995560 0.994295  1.010215 

7 4.935E-03  0.995580 0.993894  1.010994 

8 4.895E-03  0.994530 0.992090  1.019644 

9 4.930E-03  0.995155 0.992543  1.015371 

10 4.940E-03  0.996821 0.996242  1.010546 

11 4.940E-03  0.996545 0.995233  1.007137 

12 4.920E-03  0.995024 0.993562  1.016995 

13 4.740E-03  0.990741 0.986755  1.047232 

14 4.920E-03  0.996096 0.986755  1.013551 

15 4.920E-03  0.995886 0.994811  1.017562 

16 4.935E-03  0.995527 0.993712  1.015016 

17 4.935E-03  0.996789 0.996458  1.008626 

18 4.720E-03  0.990145 0.986041  1.047654 

19 4.940E-03  0.996484 0.994882  1.009134 

20 4.850E-03  0.994826 0.992811  1.023520 

       

Mean 4.897E-03  0.995036 0.992851  1.02E+00 

Std Dev 7.435E-05  0.002043 0.003281  1.31E-02 

Cv 1.518E-2     1.29% 
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Table C.3: ECG individual subject temporal advance/gain results (subject VS). 

 

 
Advance 

(sec) 
 

Correlations 
   Time (max)          Frequency 

 Gain 

       

1 4.940E-03  0.997588 0.997498  0.994115 

2 4.940E-03  0.997740 0.997679  0.993488 

3 4.940E-03  0.997615 0.997507  0.992754 

4 4.940E-03  0.997805 0.997725  0.992032 

5 4.940E-03  0.997584 0.997527  0.996060 

6 4.940E-03  0.997606 0.997478  0.992724 

7 4.940E-03  0.997823 0.997767  0.991812 

8 4.940E-03  0.997712 0.997644  0.995889 

9 4.940E-03  0.998222 0.998159  0.992502 

10 4.940E-03  0.997506 0.997393  0.995934 

11 4.940E-03  0.997775 0.997718  0.993632 

12 4.940E-03  0.997741 0.997640  0.992080 

13 4.940E-03  0.997740 0.997657  0.992863 

14 4.940E-03  0.998047 0.997988  0.991658 

15 4.940E-03  0.997859 0.997815  0.992212 

16 4.940E-03  0.997596 0.997473  0.992083 

17 4.940E-03  0.998129 0.998071  0.989812 

18 4.940E-03  0.998131 0.998085  0.990806 

19 4.940E-03  0.997845 0.997797  0.988819 

20 4.940E-03  0.998134 0.998099  0.989667 

       

Mean 4.940E-03  0.997810 0.997736  9.93E-01 

Std Dev 8.899E-19  0.000216 0.000235  1.98E-03 

Cv 1.801E-16     0.20% 
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Table C.4: ECG individual subject temporal advance/gain results (subject MH). 

 

 
Advance 

(sec) 
 Correlations 

   Time (max)          Frequency  Gain 

       

1 4.935E-03  0.996582 0.996615  0.993799 

2 4.935E-03  0.996613 0.996660  0.995318 

3 4.940E-03  0.996777 0.996815  0.997130 

4 4.935E-03  0.996559 0.996566  0.998369 

5 4.935E-03  0.996581 0.996639  0.991139 

6 4.935E-03  0.996697 0.996717  0.994246 

7 4.935E-03  0.996856 0.996865  0.994929 

8 4.935E-03  0.996765 0.996856  0.991703 

9 4.935E-03  0.996765 0.996856  0.991703 

10 4.935E-03  0.996671 0.996769  0.992776 

11 4.935E-03  0.996672 0.996731  0.996011 

12 4.940E-03  0.996887 0.996910  0.993871 

13 4.940E-03  0.997164 0.997181  0.993401 

14 4.940E-03  0.997281 0.997300  0.994353 

15 4.940E-03  0.996850 0.996882  0.996805 

16 4.940E-03  0.996663 0.996663  0.997880 

17 4.935E-03  0.996888 0.996912  0.993724 

18 4.940E-03  0.996861 0.996942  0.994140 

19 4.935E-03  0.996805 0.996872  0.993747 

20 4.940E-03  0.996724 0.996753  0.997836 

       

Mean 4.937E-03  0.996783 0.996825  9.95E-01 

Std Dev 2.513E-06  0.000184 0.000180  2.13E-03 

Cv 5.090E-04     0.21% 
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Table C.5: ECG individual subject temporal advance/gain results (subject MJ). 

 

 
Advance 

(sec) 
 Correlations 

 Time (max)        Frequency  Gain 

       

1 4.940E-03  0.999086 0.999120  0.960111 

2 4.935E-03  0.999067 0.999114  0.959517 

3 4.935E-03  0.999152 0.999189  0.958933 

4 4.935E-03  0.999220 0.999251  0.958809 

5 4.935E-03  0.999320 0.999349  0.958463 

6 4.935E-03  0.999083 0.999142  0.959544 

7 4.935E-03  0.998514 0.998628  0.962656 

8 4.935E-03  0.998348 0.998457  0.965520 

9 4.935E-03  0.998347 0.998460  0.967464 

10 4.935E-03  0.998068 0.998223  0.969114 

11 4.935E-03  0.998195 0.998338  0.967554 

12 4.935E-03  0.998105 0.998240  0.968978 

13 4.930E-03  0.998312 0.998448  0.963231 

14 4.930E-03  0.998124 0.998242  0.965064 

15 4.935E-03  0.998317 0.998447  0.964428 

16 4.935E-03  0.998188 0.998281  0.965663 

17 4.935E-03  0.998051 0.998189  0.966816 

18 4.935E-03  0.997984 0.998110  0.967643 

19 4.935E-03  0.997899 0.998110  0.967759 

20 4.935E-03  0.998072 0.998228  0.968147 

       

Mean 4.935E-03  0.998473 0.998578  9.64E-01 

Std Dev 1.970E-06  0.000482 0.000435  3.80E-03 

Cv 3.992E-04     0.39% 
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Table C.6: Distortion ratios (%, subject RJ). 
 

 DR (overall) Frequency Range (Hz) 

 
Time 

Domain 
Frequency 

Domain 
0.5 to 25 25 to 100 25 to 200 

      

1 7.99 7.94 6.33 38.35 38.48 

2 8.24 8.17 6.33 41.08 41.18 

3 8.24 8.16 6.42 39.29 39.39 

4 8.26 8.21 6.35 40.67 40.78 

5 8.30 8.20 6.38 40.45 40.56 

6 8.25 8.15 6.53 40.11 40.30 

7 8.07 7.98 6.26 40.03 40.17 

8 8.62 8.50 6.48 41.23 41.32 

9 8.41 8.28 6.45 40.31 40.38 

10 8.11 8.05 6.39 38.70 38.79 

11 8.39 8.31 6.43 39.33 39.50 

12 8.29 8.21 6.34 41.42 41.50 

13 8.04 7.96 6.28 40.16 40.26 

14 8.44 8.31 6.38 42.16 42.26 

15 8.41 8.36 6.45 41.65 41.72 

16 8.62 8.53 6.48 41.54 41.67 

17 8.68 8.56 6.63 40.46 40.55 

18 8.52 8.41 6.33 44.13 44.17 

19 7.81 7.73 6.20 37.63 37.71 

20 8.15 8.13 6.26 41.36 41.48 

      

Mean 8.29 8.21 6.39 40.50 40.61 

Std Dev 0.23 0.21 0.10   1.46   1.44 
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Table C.7: Distortion ratios (%, subject EG). 

 

 DR (overall) Frequency Range (Hz) 

 
Time 

Domain 
Frequency 

Domain 
0.5 to 25 25 to 100 25 to 200 

      

1   8.13   8.03 6.20 46.01   46.24 

2   8.73   8.60 6.25 51.04   51.27 

3   9.22   9.11 6.10 58.81   58.93 

4 14.47 13.94 7.74 89.54 101.71 

5   9.73   9.67 6.17 59.68   59.75 

6   9.50   9.36 6.11 60.27   60.39 

7   9.51   9.38 6.19 58.88   59.05 

8 10.74 10.53 6.53 65.76   69.67 

9 10.03   9.87 6.04 65.53   65.60 

10   8.08   7.98 5.97 47.56   47.68 

11   8.33   8.18 6.04 48.98   49.11 

12 10.20   9.90 6.40 62.13   62.70 

13 14.65 14.11 7.93 86.51   97.94 

14   8.99   8.83 6.35 49.18   51.28 

15   9.32   9.18 6.32 54.55   55.88 

16   9.65   9.49 6.07 66.67   66.74 

17   8.09   7.98 6.17 44.62   45.40 

18 15.07 14.60 8.09 92.26 104.55 

19   8.47   8.35 6.12 49.72   49.94 

20 10.56 10.33 6.83 58.85   64.29 

      

Mean 10.07   9.87 6.48 60.83   63.41 

Std Dev   2.16   2.02 0.65 14.07   17.88 
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Table C.8: Distortion Ratios (%, subject VS). 

 

 DR (overall) Frequency Range (Hz) 

 
Time 

Domain 
Frequency 

Domain 
0.5 to 25 25 to 100 

     

1 6.90 6.87 5.31 72.62 

2 6.69 6.67 5.22 61.95 

3 6.89 6.86 5.17 63.50 

4 6.62 6.61 5.07 65.66 

5 6.92 6.89 5.27 61.35 

6 6.90 6.88 5.13 59.67 

7 6.57 6.56 5.11 63.58 

8 6.74 6.73 5.23 62.27 

9 7.52 5.98 5.16 50.42 

10 7.03 7.02 5.23 63.39 

11 6.63 6.61 5.23 65.17 

12 7.10 6.72 5.08 62.72 

13 6.70 6.68 5.17 62.87 

14 6.24 6.23 5.14 61.38 

15 6.51 6.49 5.21 58.28 

16 6.92 6.90 5.10 68.36 

17 6.12 6.12 5.08 65.39 

18 6.12 6.11 5.15 58.74 

19 6.58 6.52 4.99 73.99 

20 7.73 7.49 5.22 61.08 

     

Mean 6.38 6.36 5.38 73.46 

Std Dev 0.48 0.47 0.19   9.58 
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Table C.9: Distortion Ratios (%, Subject MH). 

 

 DR (overall) Frequency Range (Hz) 

 
Time 

Domain 
Frequency 

Domain 
0.5 to 25 25 to 100 

     

1 8.25 8.21 5.90 46.09 

2 8.16 8.13 5.86 48.43 

3 8.02 7.96 5.88 46.94 

4 8.27 8.24 5.95 44.39 

5 8.28 8.21 5.87 50.56 

6 8.10 8.10 5.68 53.21 

7 7.91 7.90 5.81 47.57 

8 7.96 7.91 5.87 49.41 

9 7.92 7.91 5.87 49.41 

10 8.05 8.01 5.81 53.41 

11 8.10 8.06 5.88 54.14 

12 7.86 7.83 5.80 47.57 

13 7.49 7.48 5.87 42.37 

14 7.36 7.33 5.76 45.74 

15 7.90 7.86 5.91 43.06 

16 8.16 8.15 5.86 47.26 

17 7.87 7.85 5.75 48.99 

18 7.86 7.80 5.78 47.59 

19 7.92 7.87 5.84 47.41 

20 8.07 8.03 5.85 50.04 

     

Mean 6.77 6.65 5.16 63.12 

Std Dev 0.40 0.35 0.08   5.03 
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Table C.10: Distortion Ratios (%, subject MJ). 

 

 TDR (overall) Frequency Range (Hz) 

 
Time 

Domain 
Frequency 

Domain 
0.5 to 25 25 to 100 

     

1 5.76 5.76 5.14 67.19 

2 5.81 5.81 5.18 76.17 

3 5.73 5.72 5.13 64.37 

4 5.63 5.63 5.07 59.44 

5 5.48 5.48 5.01 57.64 

6 5.77 5.76 5.14 70.92 

7 6.39 6.38 5.33 76.06 

8 6.50 6.49 5.42 74.15 

9 6.40 6.37 5.46 61.26 

10 6.69 6.65 5.57 69.57 

11 6.59 6.56 5.54 65.05 

12 6.66 6.64 5.61 71.80 

13 6.65 6.62 5.43 79.16 

14 6.84 6.83 5.50 89.96 

15 6.57 6.56 5.44 74.78 

16 6.75 6.74 5.47 90.84 

17 6.84 6.81 5.51 85.83 

18 6.91 6.89 5.49 78.04 

19 6.91 6.87 5.48 84.88 

20 6.71 6.69 5.57 72.15 

     

Mean 7.98 7.94 5.84 48.18 

Std Dev 0.23 0.23 0.06   3.16 
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Table C.11: Relative spectral contribution above and below 25 Hz 
       (subjects: RJ, EG, VS - normal heart rates). 

 

 Relative Contribution (%) 

 RJ  EG  VS 

      

 < 25 Hz > 25 Hz  < 25 Hz > 25 Hz  <  25 Hz > 25 Hz 

         

1 92.42 7.58  92.23 7.77  95.49 4.51 

2 92.29 7.71  91.61 8.39  94.54 5.46 

3 92.32 7.68  91.68 8.32  93.93 6.07 

4 92.10 7.90  92.07 7.93  94.54 5.46 

5 92.09 7.91  91.15 8.85  94.16 5.84 

6 92.58 7.42  91.74 8.26  93.53 6.47 

7 92.35 7.65  91.44 8.56  94.42 5.58 

8 91.95 8.05  91.48 8.52  94.43 5.57 

9 92.09 7.91  91.88 8.12  95.52 4.48 

10 92.39 7.61  92.26 7.74  93.80 6.20 

11 92.00 8.00  92.01 7.99  94.76 5.24 

12 92.26 7.74  91.63 8.37  95.49 4.51 

13 92.37 7.63  91.76 8.24  94.40 5.60 

14 92.09 7.91  91.75 8.25  95.18 4.82 

15 92.15 7.85  91.66 8.34  94.52 5.48 

16 91.97 8.03  92.40 7.60  94.02 5.98 

17 91.99 8.01  92.38 7.62  95.37 4.63 

18 92.38 7.62  91.92 8.08  95.34 4.66 

19 92.55 7.45  92.15 7.85  94.82 5.18 

20 92.34 7.66  91.76 8.24  95.38 4.62 

         

Mean 92.23 7.77  91.85 8.15  94.68 5.32 

Std Dev 0.19 0.19  0.33 0.33  0.62 0.62 
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Table C.12: Relative spectral contribution above and below 25 Hz 
                                      (subjects: MH, MJ - tachycardia). 

 

 Relative Contribution (%) 

 MH  MJ 

    

 < 25 Hz > 25 Hz  < 25 Hz > 25 Hz 

      

1 91.35 8.65  96.10 3.90 

2 92.09 7.91  96.27 3.73 

3 92.32 7.68  95.77 4.23 

4 91.77 8.23  95.93 4.07 

5 92.19 7.81  96.21 3.79 

6 92.15 7.85  96.20 3.80 

7 92.34 7.66  95.06 4.94 

8 92.67 7.33  94.76 5.24 

9 92.67 7.33  94.66 5.34 

10 92.67 7.33  94.58 5.42 

11 92.64 7.36  94.44 5.56 

12 92.70 7.30  94.07 5.93 

13 92.70 7.30  94.62 5.38 

14 91.35 8.65  94.84 5.16 

15 91.87 8.13  94.51 5.49 

16 91.83 8.17  95.06 4.94 

17 92.77 7.23  94.65 5.35 

18 92.24 7.76  94.28 5.72 

19 92.41 7.59  94.74 5.26 

20 92.60 7.40  94.52 5.48 

      

Mean 92.27 7.73  95.06 4.94 

Std Dev 0.44 0.44  0.72 0.72 
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Table C.13: Input/output waveform dissimilarity (1-rMSP). 

 

 RJ  EG  VS  MH  MJ 

          

1 0.00304  0.00318  0.00225  0.00312  0.00062 

2 0.00322  0.00362  0.00211  0.00320  0.00060 

3 0.00317  0.00411  0.00212  0.00298  0.00056 

4 0.00322  0.00749  0.00208  0.00350  0.00054 

5 0.00320  0.00453  0.00224  0.00302  0.00046 

6 0.00315  0.00432  0.00216  0.00285  0.00060 

7 0.00307  0.00429  0.00198  0.00290  0.00110 

8 0.00344  0.00498  0.00219  0.00290  0.00110 

9 0.00328  0.00475  0.00184  0.00290  0.00110 

10 0.00310  0.00313  0.00229  0.00288  0.00110 

11 0.00329  0.00333  0.00205  0.00293  0.00124 

12 0.00324  0.00463  0.00207  0.00304  0.00130 

13 0.00307  0.00763  0.00205  0.00289  0.00102 

14 0.00330  0.00367  0.00187  0.00263  0.00120 

15 0.00333  0.00393  0.00195  0.00308  0.00108 

16 0.00345  0.00438  0.00212  0.00313  0.00124 

17 0.00342  0.00312  0.00177  0.00288  0.00127 

18 0.00340  0.00810  0.00182  0.00280  0.00136 

19 0.00292  0.00341  0.00184  0.00300  0.00136 

20 0.00319  0.00465  0.00629  0.00312  0.00131 

          

Mean 0.32%  0.46%  0.23%  0.30%  0.10% 

Std Dev 0.000143  0.001488  0.000962  0.000185  0.000314 
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Table C.14: Input/output variability of three ECG signal parameters 
(subject RJ). 

 

 
INPUT  OUTPUT 

Stat 
Peak 
Ampl. 
(mV) 

Peak 
Time 
(ms) 

RMS 
Ampl. 
(mV) 

 
Peak 
Ampl. 
(mV) 

Peak 
Time 
(ms) 

RMS 
Ampl. 
(mV) 

        

 1.5576 0.2990 2.126  1.6254 0.2943 2.162 

 1.6300 0.2925 2.234  1.6872 0.2875 2.271 

 1.6174 0.2855 2.239  1.6908 0.2810 2.281 

 1.6607 0.2826 2.298  1.7332 0.2779 2.340 

 1.6626 0.3322 2.285  1.7359 0.3273 2.327 

 1.4837 0.3067 2.049  1.5450 0.3023 2.088 

 1.5345 0.3406 2.110  1.6037 0.3360 2.144 

 1.6437 0.3199 2.228  1.6888 0.3152 2.271 

 1.6472 0.2964 2.280  1.7022 0.2912 2.322 

 1.6598 0.3270 2.296  1.7382 0.3222 2.337 

 1.5719 0.3063 2.183  1.6628 0.3019 2.225 

 1.6436 0.3190 2.257  1.7150 0.3138 2.297 

 1.5663 0.3074 2.138  1.6323 0.3020 2.172 

 1.6350 0.2894 2.239  1.7125 0.2844 2.279 

 1.6620 0.3054 2.314  1.7353 0.3003 2.358 

 1.6738 0.3134 2.291  1.7551 0.3083 2.337 

 1.5803 0.2995 2.187  1.6667 0.2952 2.236 

 1.6668 0.2794 2.126  1.7036 0.2749 2.162 

 1.5685 0.2777 2.150  1.6437 0.2730 2.180 

 1.6556 0.2699 2.257  1.7437 0.2648 2.294 

        

Mean 1.6161 0.3025 2.214  1.6861 0.2977 2.254 

Std Dev 0.0534 0.0191 0.0759  0.0543 0.0191 0.0785 

        

* p < 0.9449 0.9990 0.8814     

        

Pearson r 0.9678 0.9999 0.9988     

 
* from the F test for variance differences 
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Table C.15: Input/output variability of three ECG signal parameters 
(subject EG). 

 

 
INPUT  OUTPUT 

Stat 
Peak 
Ampl. 
(mV) 

Peak 
Time 
(ms) 

RMS 
Ampl. 
(mV) 

 
Peak 
Ampl. 
(mV) 

Peak 
Time 
(ms) 

RMS 
Ampl. 
(mV) 

        

 2.1646 0.4618 2.265  2.2174 0.4593 2.285 

 2.2052 0.5002 2.354  2.2599 0.4976 2.375 

 2.1545 0.5544 2.373  2.1928 0.5526 2.392 

 2.3904 0.5695 2.387  2.7497 0.5695 2.495 

 2.0681 0.5930 2.265  2.0904 0.5889 2.298 

 2.1508 0.6122 2.316  2.1732 0.6098 2.340 

 2.2127 0.4989 2.345  2.2844 0.4963 2.371 

 2.3122 0.6224 2.368  2.4505 0.6215 2.415 

 2.1787 0.5480 2.290  2.2600 0.5446 2.325 

 2.2421 0.4924 2.439  2.2651 0.4891 2.465 

 2.1633 0.6359 2.365  2.1998 0.6334 2.382 

 2.2950 0.5242 2.344  2.3495 0.5231 2.384 

 2.3853 0.5682 2.427  2.7538 0.5680 2.542 

 2.3057 0.5049 2.472  2.3887 0.5035 2.505 

 2.3011 0.5126 2.515  2.3874 0.5110 2.559 

 2.1703 0.4924 2.336  2.1916 0.4877 2.371 

 2.2793 0.6372 2.265  2.3150 0.6347 2.285 

 2.3948 0.6366 2.453  2.7841 0.6365 2.570 

 2.2907 0.5872 2.265  2.2787 0.5847 2.285 

 2.3548 0.6169 2.480  2.5228 0.6162 2.539 

        

Mean 2.2510 0.5585 2.366  2.3557 0.5564 2.409 

Std Dev 0.0934 0.0572 0.0777  0.2021 0.0577 0.0969 

        

* p < 0.0015 0.9743 0.3438     

        

Pearson r: 0.9151 0.9998 0.9560     

 
* from the F test for variance differences 
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Table C.16: Input/output variability of three ECG signal parameters 
(subject VS). 

 

 
INPUT  OUTPUT 

Stat 
Peak 
Ampl. 
(mV) 

Peak 
Time 
(ms) 

RMS 
Ampl. 
(mV) 

 
Peak 
Ampl. 
(mV) 

Peak 
Time 
(ms) 

RMS 
Ampl. 
(mV) 

        

 1.4035 0.3944 1.591  1.4963 0.3895 1.582 

 1.4357 0.3464 1.624  1.5187 0.3413 1.613 

 1.4377 0.3488 1.611  1.4956 0.3438 1.599 

 1.4562 0.3574 1.651  1.5170 0.3524 1.638 

 1.4643 0.2720 1.591  1.5377 0.2667 1.582 

 1.4754 0.4186 1.636  1.5519 0.4135 1.624 

 1.4951 0.3783 1.702  1.5683 0.3732 1.688 

 1.5006 0.3575 1.641  1.5759 0.3522 1.634 

 1.5069 0.3612 1.630  1.5834 0.3558 1.625 

 1.5290 0.3658 1.683  1.6225 0.3607 1.676 

 1.5020 0.4485 1.591  1.5889 0.4432 1.582 

 1.4912 0.4477 1.671  1.5634 0.4424 1.661 

 1.5231 0.3962 1.709  1.6082 0.3912 1.696 

 1.5328 0.5518 1.740  1.6061 0.5468 1.726 

 1.5464 0.4681 1.756  1.6312 0.4627 1.742 

 1.5704 0.4593 1.738  1.6446 0.4540 1.724 

 1.5676 0.4977 1.792  1.6399 0.4928 1.774 

 1.5705 0.4734 1.780  1.6418 0.4685 1.764 

 1.5644 0.4693 1.785  1.6228 0.4642 1.765 

 1.5884 0.4681 1.788  1.6522 0.4630 1.770 

        

Mean 1.5081 0.4140 1.686  1.5833 0.4089 1.673 

Std Dev 0.0518 0.0670 0.0715  0.0509 0.0670 0.0683 

        

* p < 0.9395 0.9985 0.8453     

        

Pearson r 0.9802 1.0000 0.9994     

 
* from the F test for variance differences 
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Table C.17: Input/output variability of three ECG signal parameters 
(subject MH). 

 

 
INPUT  OUTPUT 

Stat 
Peak 
Ampl. 
(mV) 

Peak 
Time 
(ms) 

RMS 
Ampl. 
(mV) 

 
Peak 
Ampl. 
(mV) 

Peak 
Time 
(ms) 

RMS 
Ampl. 
(mV) 

        

 0.5498 0.3314 0.9365  0.5674 0.3273 0.9307 

 0.5020 0.3640 0.8840  0.5110 0.3589 0.8799 

 0.5461 0.2644 0.9163  0.5532 0.2591 0.9136 

 0.5643 0.2868 0.9579  0.5798 0.2822 0.9564 

 0.6073 0.3090 0.9365  0.6228 0.3054 0.9307 

 0.5290 0.2432 0.9187  0.5388 0.2367 0.9134 

 0.5532 0.2772 0.9601  0.5577 0.2726 0.9552 

 0.5780 0.2884 1.063  0.5867 0.2843 1.054 

 0.5780 0.2884 1.063  0.5867 0.2843 1.054 

 0.5534 0.2563 1.013  0.5566 0.2505 1.006 

 0.5144 0.2640 0.9090  0.5210 0.2583 0.9053 

 0.5570 0.2974 0.9765  0.5683 0.2931 0.9705 

 0.5654 0.2779 0.9994  0.5811 0.2737 0.9928 

 0.5524 0.2335 0.9515  0.5564 0.2284 0.9461 

 0.5922 0.2761 1.018  0.6087 0.2714 1.015 

 0.6063 0.3106 1.014  0.6134 0.3060 1.012 

 0.6247 0.2459 0.9365  0.6310 0.2413 0.9307 

 0.5412 0.3174 0.9681  0.5558 0.3115 0.9625 

 0.5755 0.3404 1.042  0.5896 0.3361 1.036 

 0.5777 0.1638 0.9823  0.5862 0.1590 0.9802 

        

Mean 0.5634 0.2818 0.9723  0.5736 0.2770 0.9672 

Std Dev 0.0306 0.0437 0.0514  0.0316 0.0439 0.05045 

        

* p < 0.8993 0.9827 0.9369     

        

Pearson r 0.9898 0.9999 0.9993     

 
* from the F test for variance differences 
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Table C.18: Input/output variability of three ECG signal parameters 
(subject MJ). 

 

 
INPUT  OUTPUT 

Stat 
Peak 
Ampl. 
(mV) 

Peak 
Time 
(ms) 

RMS 
Ampl. 
(mV) 

 
Peak 
Ampl. 
(mV) 

Peak 
Time 
(ms) 

RMS 
Ampl. 
(mV) 

        

 0.6045 0.2458 1.622  0.5906 0.2423 1.558 

 0.6053 0.2470 1.697  0.5955 0.2431 1.628 

 0.6187 0.2378 1.730  0.6035 0.2341 1.659 

 0.6676 0.2438 1.861  0.6551 0.2404 1.785 

 0.6938 0.2435 1.945  0.6769 0.2394 1.864 

 0.5708 0.2408 1.595  0.5594 0.2375 1.530 

 0.4463 0.2388 1.286  0.4457 0.2352 1.238 

 0.4558 0.2346 1.246  0.4521 0.2307 1.203 

 0.4615 0.2389 1.266  0.4616 0.2353 1.224 

 0.4434 0.2297 1.226  0.4470 0.2262 1.188 

 0.4558 0.2175 1.259  0.4611 0.2134 1.218 

 0.4470 0.2265 1.220  0.4564 0.2227 1.182 

 0.4562 0.2519 1.326  0.4660 0.2489 1.277 

 0.4621 0.2487 1.265  0.4728 0.2456 1.221 

 0.4572 0.2568 1.296  0.4701 0.2535 1.250 

 0.4757 0.2703 1.277  0.4854 0.2671 1.233 

 0.4542 0.2783 1.251  0.4677 0.2746 1.209 

 0.4775 0.3061 1.287  0.4871 0.3025 1.245 

 0.4551 0.3394 1.290  0.4658 0.3364 1.249 

 0.4668 0.3305 1.291  0.4790 0.3273 1.249 

        

Mean 0.5088 0.2564 1.412  0.5100 0.2528 1.361 

Std Dev 0.0830 0.0332 0.234  0.0739 0.0334 0.220 

        

* p < 0.6161 0.9830 0.7924     

        

Pearson r 0.9973 1.0000 1.0000     

 
* from the F test for variance differences  
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